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Abstract

A product network consists of a vast number of goods which are linked to

one another. This paper investigates decision-making in this new environment

by utilizing revealed preference techniques. The decision maker starts her search

from a particular starting point. Due to the network structure, the decision

maker will not have access to all available alternatives. We illustrate how one

can deduce both the decision maker’s preference and the network she faces from

the observed behavior. We provide two characterizations of the model with ob-

served and unobserved starting points. We also consider extensions of the model

with limited search and random network.
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1 Introduction

Consider a Netflix consumer who is searching for a movie. First, she looks up a partic-

ular movie that she has heard. Then, Netflix recommends several other films. These

recommendations create a product network in which a large number of movies are

linked to one another. Each movie is a node in the product network, and a recom-

mendation represents the edge between two movies. While one of the first e-commerce

websites to introduce product networks was Netflix, nowadays almost every e-commerce

site (Amazon, Barnes & Noble, YouTube, Yelp, iTunes, etc.) offers their product net-

works. Retail websites use phrases such as “customers who viewed this item also

viewed,” “you might also like,” “similar items,” etc., to recommend new products.

In marketing, researchers recognize the importance of product network in decision-

making (Hoffman and Novak [1996], Bucklin and Sismeiro [2003], Mandel and Johnson

[2002]). Moe [2003] claims that “[e]normous potential exists in studying an individual’s

behavior as they navigate from page to page.” This navigation is the key difference be-

tween the classical decision-making examined in economics and decision-making within

product networks. Consumers discover alternatives through search in a product net-

work. Shopping within a product network is analogous to walking the aisles of a

supermarket. Each product has a virtual “shelf position” in the product network. As

in the traditional supermarkets, the virtual shelf position immensely affects demand for

each product (Johnson et al. [2004], Oestreicher-Singer and Sundararajan [2012]). By

improving their knowledge of the consumer’s decision-making, firms can improve their

marketing strategies. Hence understanding how a product network shapes consumers’

search has become more crucial for businesses. Surprisingly, theoretical work on the

decision making within a product network is very limited.

Throughout the paper, we assume that the product network of a consumer is not

observable, as well as the preferences of the consumer. There are two important rea-

sons behind this assumption. Firstly, we want to make a distinction between perceived

vs. exogenous networks. Since the actual search can be influenced by different fac-

tors such as brand familiarity (Baker et al. [1986]), packaging (Garber [1995]), color

(Aaker [1997]), the perceived network may be different than the product network ex-

ogenously provided as in Amazon or Netflix. The second is that the perceived product

network could solely be an outcome of what our brains remind us of other relevant

alternatives. Indeed, cognitive psychologists have illustrated that our memory is or-

ganized in an associative network where nodes represent products, and links repre-
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sent connections between products (Anderson and Bower [1973], Collins and Loftus

[1975], Meyer and Schvaneveldt [1976], Anderson [1983], Ellis and Hunt [1993], and

Gentner and Stevens [1983]). The fact that the links exist in memory does not neces-

sarily mean that the links are activated. Several factors affect the activation of a link

such as shape, color, and smell (Mccracken and Macklin [1998]). Hence the presence

of a particular product might trigger remembrance and helps us to make associations.

In this paper, we investigate the decision-making in this new environment where

consumers encounter products in a product network utilizing revealed preference tech-

niques. We consider a customer who picks her most preferred option from the alter-

natives she can reach, not from the entire feasible set. As we do not observe either

consumer preferences or the product network, a choice can be attributed to either pref-

erence or limited search due to the product network. Our premise is that we can infer

not only the preferences of consumers but also the network by studying their behav-

iors. We propose an identification strategy to find out when and how one can deduce

both consumer’s preferences and the perceived product network she faces from observed

choices. Our identification will help to pinpoint: (i) which products belong to the same

sub-category (connected components)? (ii) which products are most relevant regarding

linking popular products to niche products? and (iii) which products are most likely

to trigger sales of a particular product? The ability to answer these questions could be

of vital practical importance for firms, regulators, and policy makers.

One of the fundamental assumption in our model that the decision maker has

well-defined preferences, which are not affected by the search she undertakes. This

assumption has been utilized in empirical research in marketing (see, Chen and Yao

[2015], Honka and Chintagunta [2015], Kim et al. [2010], Koulayev [2010]). Recently,

Bronnenberg et al. [2016] provide a supporting evidence by showing that the valuation

of an alternative is the same during search and at the time of choice for online search.

Similarly, Reutskaja et al. [2011] also provide experimental evidence for the fact that

subjects are good at optimizing within options they have explored.

Every search in a network starts from a particular available alternative. We call

this alternative a starting point in the consumer’s search. Different starting points

may result in various consideration sets and hence different choices (Bronnenberg et al.

[2016]). Our initial analysis assumes that we, as the analyst, observe both choices

and corresponding starting points. The starting point of a search is the alternative

that the consumer initially pays attention. There are many potential reasons for a
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particular starting point. For example, a starting point could be (i) the last purchase

or status quo, (ii) a product advertised to the consumer, or (iii) a recommendation

from someone in the consumer’s social network (Masatlioglu and Nakajima [2013]).

With the explosion of data mining technologies, observability of such data is plausible

nowadays.1

In our baseline model, we assume that the perceived product network induces the

only limitation the consumer faces. In every stage of the search, she is willing to “click

on” all the alternatives that are presented in her perceived network. Hence, there

is no other cognitive limitation other than the one induced by her product network.

Our consumer will consider all the goods that are reachable from the starting point.

However, as opposed to the standard theory, she might not discover all available alter-

natives due to the sparsity of the network. The standard model will be a special case

of this model where the product network is complete (i.e., all the alternatives in the

product network are linked).

Section 2 illustrates how we can infer the preference and the product network of

a decision maker only from observed choices. Identifying preferences is particularly

important for welfare analysis. As Bernheim and Rangel [2009] point out, it is typically

difficult to identify preference from boundedly rational behavior. Our result shows that

while the product network is uniquely identified, we can partially pin down preferences

in our baseline model. We show x is revealed preferred to y if x is chosen from some

set including y independent of the starting point. We also show x is revealed to be

linked to y if the starting point does not influence the choice between x and y in a

binary comparison. These results implicitly assume that the analyst observes the entire

choice behavior. We also provide a list of choice patterns which reveal the consumer’s

preference and the perceived network when we have partial data. This is crucial for

empirical studies when the data is limited.

Our identification strategy relies on the underlying choice procedure, where she

maximizes her preference within the alternatives she can reach. It is natural to question

the falsifiability of our model. To answer this question, in 2, we identify the class of

choice behaviors that are consistent with our baseline model. We show that choice

data are compatible with our model if and only if data satisfy three simple behavioral

postulates. The first one, Starting Point Contraction, says if the starting point is

1Nevertheless, it is conceivable that starting points will not be observable in some situations. We
also consider cases we only observe the classical choice data in Section 4.

3



chosen in a set, then it must be chosen from any subset of it as long as it is still

starting point. The second one, Replacement, states if an alternative is chosen even

though it is not the starting point, then the original starting point and the chosen

alternative will induce the same choices in bigger sets. The last one, Choice Reversal,

dictates that if an alternative causes a choice reversal, then the final choice is not

affected if this alternative replaces the starting point. The key feature of our approach

is that our assumptions are stated in terms of choice experiments, and therefore a

revealed preference type analysis can be used to test our model.

In Section 3, we introduce bounded rationality in our framework. In our baseline

model, given the perceived network, the consumer explores all available options which

are connected to the starting point. For example, if our Netflix consumer’s perceived

network is the same as the Netflix’s original massive network, she will end up spending

a lot of time to uncover all available options. Except for the product network, online

shopping could be seen frictionless due to the amount of extensive information about

products. However, many studies show that consumers indeed engage in very limited

search (Johnson et al. [2004], Keane et al. [2008], Goeree [2008], Kim et al. [2010]).

One might imagine that due to other limitations (such as time pressure, limited cog-

nitive capacity) consumer terminates her search after certain steps. For example, the

customer only considers the alternatives directly linked to the starting point. Of course,

this model reduces to our baseline model if the number of steps is larger than the num-

ber of options. We provide a characterization forK-step network choice for any fixed K

and discuss the properties the consideration sets resulting from K-step search satisfy.

Our revealed preference approach is based on the assumption that we can observe

not only what the decision maker chooses from a budget set but also which alternative

she initially contemplates. Nevertheless, we can imagine situations where we do not

observe the starting point, but only the standard choice data. For example, if the

starting point is what the decision maker expects to buy in the market, it can be hard

to elicit such information. Given possible limitations in the data, we would still like

to know whether we can identify decision makers who follow our procedure. Section 4

studies network choice with only classical choice data. We also illustrate how to extend

our results to revealed preference and network in the baseline model to the case with

unobserved starting points.

Section 5 investigates decision-making with a random network. The randomness

of a network can arise from two factors: (i) the exogenous product network that we
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take as given may be random (for example, Amazon’s recommendation algorithm may

produce random links between alternatives), (ii) the decision maker may randomly pay

attention to presented options. A general random network choice could be very complex

and intractable. We consider a particular case which we believe is more realistic and

tractable than others. Here, given the realization of a random network, the decision

maker only considers alternatives which are linked to the starting point. Since the links

between options are random the decision maker’s consideration set will be random. As

we do not observe the realized consideration set, the choices will appear as random.

However, this is different than the random utility models where randomness comes

from utility rather than product network. We provide a characterization result and

illustrate how to infer preference under random network.

Theoretical work on decision making within product networks is limited. The closest

paper we know of is Masatlioglu and Nakajima [2013]. They provide a framework to

study behavioral search by utilizing the idea of consideration sets. Their baseline model

is quite general, which makes very limited predictions. They also consider a particular

case, which can be represented as a network. However, each model follows completely

different choice procedures. We show that these models are behaviorally distinct (see

Section 6).

This paper also contributes to a few branches of decision theory such as refer-

ence dependent choice, limited and stochastic attention, and search. The most closely

related papers are Tversky and Kahneman [1991], Masatlioglu and Ok [2005, 2013],

Dean et al. [2014], (reference dependent choice), Manzini and Mariotti [2007, 2012,

2014], Masatlioglu et al. [2012], Cherepanov et al. [2013] (limited and random atten-

tion), Caplin and Dean [2011] (search).

2 Model

Let X be a finite set of alternatives. An extended choice problem is (S, x) where S

is a nonempty subset of X and x is a starting point in S. Intuitively, if the choice

problem is (S, x), then the set of available alternatives is S and the consumer starts

searching from an alternative x in S. A choice function c assigns a single element to

each extended choice problem (S, x).

Let N stand for the product network. If (x, y) ∈ N , we say that there is a link
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from x to y. Intuitively, if there is a link from x to y, then the agent who is considering

alternative x must also consider alternative y. We let (x, x) ∈ N for all x ∈ X . Given

N we can define a link function γ : X ×X → {0, 1} where γ(x, y) = 1 if and only if

(x, y) ∈ N .2 We assume that γ is symmetric, that is γ(x, y) = γ(y, x) for all x, y ∈ X .

In other words, the links between alternatives are undirected. If there is a link from x

to y, then there must also exist a link from y to x.

We do not specify how the product network is formed. In other words, the ana-

lyst has no prior knowledge about the product network and tries to pin it down from

the observed choice behavior. This assumption is based on the fact that each agent

potentially faces a different product network. For example, while some of them uti-

lize Amazon, others might use Barnes & Noble for buying books. Furthermore, it is

well known that many websites use algorithms that produce different recommendations

based on consumer’s characteristics.3 Even if the exogenous network is the same for

everyone (e.g., everyone uses Amazon and gets the same recommendations) it is still

possible that each agent perceives the network differently. Due to all of these observa-

tions, we assume that the product network is unobservable and try to reveal it from

the choices.

Suppose the agent faced with the choice problem (S, x) considers all reachable

alternatives from x in S in her perceived network. If the perceived network is the

same as the exogenous network, this will correspond to the agent who is not internally

constrained (i.e., no search or attention cost), but externally constrained by the network

structure. The external constraint imposed by the product network implies that no

matter how much search the agent does there may be certain alternatives that she will

never discover. In this case, given γ, the agent’s consideration set will be given by

Nx(S) = {y ∈ S| ∃ {x1, ..., xk} ⊆ S such that x1 = x, xk = y,

and γ(xi, xi+1) = 1 for i < k}

The set Nx(S) denotes all the reachable alternatives from x in S. That is, if

y ∈ Nx(S), then there exists a sequence of linked alternatives connecting x to y. In

this case, we also say that there is a path from x to y. We can think of Nx(S) as

endogenously determined consideration set of an agent faced with the choice problem

2This notation is useful when we consider probabilistic networks.
3See Linden et al. [2003] for descriptions of some common recommendation algorithms used in the

industry.
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(S, x). We say that c is a network choice if there is a strict preference relation ≻ such

that for any choice problem (S, x), c(S, x) is ≻-best element in Nx(S).

Definition 1. A choice function c is a network choice if there exists a strict pref-

erence relation ≻ on X and a symmetric link function γ such that

c(S, x) = argmax(≻, Nx(S))

where Nx(S) is defined as above.

Notice that if we have a complete product network, that is γ(x, y) = 1 for all

x, y ∈ X , then Nx(S) = S for all S and we are back to the standard model. In

other words, the standard model is a special case network choice. When we have

an incomplete product network, we can see more interesting choice behaviors. The

following example illustrates network choice and the type of choice behavior it allows.

Example 1. Efe faces a particular product network. The network is described in the

following figure. His preference is t ≻ x ≻ z ≻ y. Notice that the network is illustrated

in such a way that the height of an alternative reflects his preference.

t

z

y

x

Then, we can derive Efe’s choices.4

xyzt xyz xyt xzt yzt xy xz xt yz yt zt

x t x x x x x x

y t x x t x z y

z t x t t z z t

t t t t t t t t

4For brevity, we represent each decision problem with the available alternatives. For example, xyzt
represents {x, y, z, t}.

7



In this example, for some choice problems, Efe makes the same choices no matter

what the starting point is (e.g., the column of {x, y, z, t}). This means that these

choice problems are connected (i.e., there is a path between any two alternatives in the

set), hence starting points have no influence on the choice as in the standard theory.

On the other hand, for example, when the choice set is {x, z, t} (look at its column),

Efe chooses x when the starting point is x and he chooses t otherwise (starting point

effect).

Another interesting pattern is choice reversal for a fixed starting point (now look

at across a row). Consider the choices when the starting point is x. Efe chooses t

when the choice set is {x, y, z, t}, but he picks x when the choice problem is {x, y, t}

or {x, z, t} (network effect). That is because when we remove y or z from the choice

problem even though t is still among the available alternatives, it is no longer reachable

from x.

2.1 Characterization

Before moving on to characterization, we want to investigate the properties of consid-

eration sets (Nx(S)) in this model. Let P≥1(X) denote all nonempty subsets of X . We

say that Γx : P≥1(X) → P≥1(X) is a consideration set mapping if for any x ∈ S ⊆ X ,

x ∈ Γx(S) ⊆ S. Let {Γx}x∈X be a collection of consideration set mappings. Now the

question is that what type of properties on {Γx}x∈X guarantees that they are induced

by a search over a product network.

Lemma 1 provides an answer for that question. The first property says that if an

alternative is considered when the choice problem is (T, x), it must also be considered

when the choice problem (S, x) contains T . Intuitively, all the alternatives that are

reachable in T in her perceived network must be reachable when the choice problem is

bigger. Of course, it is possible that the decision maker considers more since there are

more alternatives which are potentially reachable from the starting point.

The second property says that if y is considered when the choice problem is (S, x),

then the consideration sets corresponding to choice problems (S, x) and (S, y) must

be the same. To see why it is true, note that if y is reachable from x in S, then any

alternative that is reachable from y must also be reachable from x and vice versa.

The last property says that if z is considered when the choice problem is (S, x),

but it is not considered when we remove y from the choice problem, then y must be
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reachable from x without z. It also imposes that z must be reachable from y in the

absence of x. The “if part” of the statement implies that y must be on the path from

x to z in the product network. Hence, both x and z must be reachable from y.

We now formally state these properties and provide the result.

A.1 (Upward Monotonicity) If y ∈ Γx(T ), then y ∈ Γx(S) for all S ⊇ T .

A.2 (Symmetry) If y ∈ Γx(S), then Γy(S) = Γx(S).

A.3 (Path Connectedness) If z ∈ Γx(S), z 6∈ Γx(S \ y), then y ∈ Γx(S \ z) and

z ∈ Γy(S \ x).5

Lemma 1. {Γx}x∈X satisfies Upward Monotonicity, Symmetry, and Path Connected-

ness if and only if there exists a symmetric link function γ such that Γx(S) = Nx(S)

for all x ∈ S ⊆ X.6

Notice that these properties are defined on consideration sets, which are usually

unobservable. If we have some information about consideration sets, Lemma 1 will

be handy. Then by verifying these properties one can claim that the agent faces

network choice. As an example, Reutskaja et al. [2011] find that the number of al-

ternatives considered increase as the choice set gets bigger. This suggests evidence

for Upward Monotonicity. In addition to that, Lemma 1 also allow us to compare

our model with existing limiting consideration models such as Manzini and Mariotti

[2007, 2012], Masatlioglu et al. [2012], Cherepanov et al. [2013] (limited attention),

Rubinstein and Salant [2006] (choice from lists), Manzini and Mariotti [2014] (random

attention), Caplin and Dean [2011] (search).

As we discussed before, it is unlikely that we will have such information on implied

consideration sets. We now propose three simple axioms on observed choice behav-

ior (not on consideration sets). We then discuss how each axiom is related to three

properties on consideration sets we discussed above.

The first axiom is similar to standard contraction axiom for the starting point. It

says that if the starting point is chosen in some set S, then it must also be chosen in

any subset T of S as long as it is the starting point. In the standard model, this would

be true of any alternative in T that is chosen when the choice problem is (S, x). But

5x, y, and z are distinct alternatives.
6All proofs are provided in the Appendix.
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in the network model, it is no longer true for all alternatives since an alternative that

is considered in a bigger choice set is not necessarily considered in a smaller choice set

unless it is the starting point.

Axiom 1. (Starting Point Contraction) If c(S, x) = x and T ⊆ S, then c(T, x) = x.

Note that Axiom 1 is directly implied by the first property of consideration sets.

To see this, suppose x is selected when the choice problem is (S, x). This means the

starting point is the best among all reachable alternatives. If some of the alternatives

are removed, the number of paths decreases, and hence the implied consideration set

can only get smaller by A.1. Since the starting point is always available and it was

chosen when the choice set was bigger, it must also be chosen when the choice set is

smaller.

The second axiom says that if y is chosen in some choice problem (T, x), then

the choices corresponding to choice problems (S, x) and (S, y) must be the same for

all S containing T . In other words, once the starting point is abandoned for some

alternative, replacing the original starting point with the chosen alternative should not

make a difference in the bigger choice sets.

Axiom 2. (Replacement) If c(T, x) = y and T ⊆ S, then c(S, x) = c(S, y).

To see why Axiom 2 holds in our model, first notice that the first and second

properties of consideration sets imply a property which we call strong symmetry: if

y ∈ Γx(T ) and T ⊆ S, then Γx(S) = Γy(S). That is because if y ∈ Γx(T ) and

T ⊆ S, then by A.1, y ∈ Γx(S) and by A.2, Γx(S) = Γy(S). Now suppose y is chosen

when the choice problem is (T, x) which implies that y is considered when the choice

problem is (T, x). By strong symmetry property, for any S ⊇ T , the consideration sets

corresponding to choice problems (S, x) and (S, y) are the same. Therefore, the agent

must choose the same alternative.

From Example 1 we can see that the network model allows for choice reversal

patterns which are not allowed by the standard model. However, it does so in a very

special way. The last axiom imposes a structure on observed choice reversals. Suppose

y is the alternative which causes a choice reversal. Axiom 3 says that if we remove the

starting point from the choice set and make y the starting point, then the choice must

be the same. Furthermore, if we remove the chosen alternative from the choice set,

replacing the original starting point with y leads to the same choice.
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Axiom 3. (Choice Reversal) If c(S, x) = z 6= c(S \ y, x), then c(S \ x, y) = z and

c(S \ z, x) = c(S \ z, y).

Axiom 3 is an implication of the properties on consideration sets. To see this

suppose z is chosen when the choice problem is (S, x) but not chosen when the choice

problem is (S \ y, x). Since by A.1, the consideration sets can get only smaller as the

choice becomes smaller it must be the case that z is not considered when the choice

problem is (S \ y, x). Then, by A.3, y must be on the path between x and z, that is

y ∈ Γx(S \ z) and z ∈ Γy(S \ x). Notice that by A.2, Γx(S \ z) = Γy(S \ z). Therefore,

we must have c(S \ z, x) = c(S \ z, y). By strong symmetry property we defined above,

we also have Γx(S) = Γy(S). Since z ∈ Γy(S \ x) ⊆ Γy(S) and we know that z is the

best alternative in Γx(S) = Γy(S), z must also be the best alternative in Γy(S \ x).

This implies c(S \ x, y) = z.

The following theorem provides a foundation for network choice.

Theorem 1. A choice function c satisfies Starting Point Contraction, Replacement,

and Choice Reversal if and only if it is network choice.7

Theorem 1 shows that network choice is captured by three simple behavioral pos-

tulates. This makes it possible to test our model non-parametrically by using the

standard revealed preference technique. We next derive the decision maker’s prefer-

ences and network from the observed choice data.

2.2 Revealed Preference and Revealed Network

In this section, we discuss how we can reveal preference and network from the choice

data given that the consumer follows the network choice. The standard theory suggests

choices directly reveal preferences. That is, x is preferred to y when x is chosen in the

presence of y. To justify such an inference, one must implicitly assume that y is

considered. In our model, the decision maker is constrained by the network. As a

result, the decision maker might not compare all available alternatives before making

a choice. Therefore, eliciting the consumer’s preference is no longer trivial. First, we

illustrate that there may be multiple preferences representing given choice behavior.

7The fact that the axioms in Theorem 1 and all the subsequent theorems are logically independent
is shown in a separate appendix which is available upon request.
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Example 2. Altan, our decision maker, always chooses x independent of the starting

point as long as it is available. However, in the absence of x, his choice is dictated by

the starting point. His behavior is summarized below.

xyz xy xz yz

x x x x

y x x y

z x x z

First, we need to make sure that Altan’s behavior can be written as a network

choice before we discuss revealed preference. To check that we utilize Theorem 1. It

is routine to verify that Altan’s behavior satisfies Axiom 1-3. Therefore by Theorem 1

we are guaranteed that a network choice representation exists. After establishing this

fact, we first discuss the revealed preference and the revealed network structure.

Firstly, the fact that the decision maker chooses x from the choice problem ({x, y}, y)

implies that there is a link from y to x. Similarly, we also know that there is a link be-

tween x and z. Since the decision maker chooses different alternatives from the choice

problems ({y, z}, y) and ({y, z}, z), there is no link between y and z (notice there is a

path between them through x). Hence, the network is fully revealed. It turns out that

is a general feature of the model. To reveal network, it suffices to look at binary choice

data with different starting points. If the decision maker’s choices from two choice

problems ({x, y}, x) and ({x, y}, y) are the same, then we reveal that x is linked to y.

Otherwise, we reveal that x is not linked to y.

While the entire network is revealed uniquely, the preference is not unique in this

example. Indeed, there are two possible preference relations that can represent the

choice behavior: x ≻1 y ≻1 z and x ≻2 z ≻2 y. Given that there can be multiple

preferences representing the choice, we need to define what we mean by revealed pref-

erence. Following Masatlioglu et al. [2012] we say that x is revealed preferred to y if x

is ranked higher than y in all possible representations.

Definition 2. Suppose c is a network choice and let {(≻i, γ)| i = 1, . . . , N} be all

possible representations of c. Then, we say that x is revealed to be preferred to y if

x ≻i y for all i = 1, . . . , N .

Given the revealed network, we can compare two alternatives x and y only if there

is a link or path from x to y. If there is no link or path between these two alternatives,
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there will be no choice problem in which these alternatives are considered at the same

time implying that we cannot tell which alternative is more preferred.

One might think that if there is a path between two alternatives, then we can reveal

which one is more preferred. However, Example 2 illustrates that the existence of a

path is not enough either. In that example, there is a path between y and z, but we

can still not tell which alternative is more preferred. We can only reveal preference

between two alternatives only if (i) there is a choice set in which a link or path between

them exists and (ii) one alternative is chosen over the other.

Consider an observation that the decision maker chooses x when y is the starting

point. This observation satisfies both conditions above: (i) there is a path between x

and y, and (ii) x is chosen over y. The following proposition summarizes the results.

Proposition 1. Suppose c is a network choice. Then,

• x is revealed preferred to y if and only if there exists S such that c(S, y) = x,

• x is revealed to be linked to y if and only if c({x, y}, x) = c({x, y}, y).8

Proposition 1 provides a necessary and sufficient condition for revealed preference

in our model. This result implicitly assumes that the analyst observes the entire

choice behavior. We will illustrate that Proposition 1 may not be useful for revealing

preference with limited data. Let assume that we only observe x = c(S ∪ y, z) and

y = c({y, z}, z) nothing else. By Proposition 1, we know that both x and y are revealed

preferred to z. However, Proposition 1 is silent about the relative ranking of x and y

with this limited data. In our model, one can prove that x is preferred to y by seeking

more choice data and/or applying the axioms to fill in the missing choice data. Indeed,

we must have a set T ⊂ S such that c(T, y) = x, hence x is preferred to y. Therefore, if

we had the entire choice data, Proposition 1 would have informed us about the relative

ranking of x and y.

We would like to list more choice patterns which reveal the decision maker’s pref-

erence. These patterns will inform us about revealed preference when we have partial

data, which is more useful for empirical studies.

1. x = (S, y),

8All results in this section can be easily verified by the proof of Theorem 1.
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2. x = c(S ∪ y, z) 6= c(S, z),

3. x = c(S, z) and y = c(T, z). for T ⊂ S.

The first one directly follows from Proposition 1. The second one is a choice reversal

where x is unchosen when a seemingly irrelevant alternative y is removed. Then in the

decision problem (S ∪ y, z), y must be on the path from z to x. That is the only way

it can affect the decision maker’s choice. We can conclude that x is preferred to y

because we know that y was considered and x was chosen.

In the third choice pattern, y = c(T, z) reveals that y is reachable from z in T .

Therefore, y is reachable from z in S since T is a subset of S. In the decision problem

(S, z), y is considered and x is chosen. Therefore, x is revealed preferred to y.

Any preference that can represent c must be consistent with the above revelations.

Indeed, we might get more revelation due to the transitivity. For example, suppose

we learn x is revealed preferred z from the first observation and z is revealed preferred

to y from the third choice pattern. Then we must have x is revealed to preferred y.

Formally, given a network choice c, let

x ≫c y if one of above three choice patterns is observed

and ≫TC
c be the transitive closure of ≫c. If x ≫TC

c y, then we can conclude the DM

prefers x over y. The converse is also true: any preference that respects ≫TC
c represents

c as well. Thus, ≫TC
c fully characterizes the revealed preference of the network choice.

The next proposition states these facts formally.

Proposition 2. (Revealed Preference) Suppose c is a network choice. Then, x is

revealed to be preferred to y iff x ≫TC
c y.

Proposition 1 shows us how to reveal network uniquely if we have access to binary

choice data. If we do not have such data, we may still be interested in whether there

exists a path between two alternatives in a given set since it gives us information about

consideration sets. Let x, y ∈ S be given and suppose one of the following is observed.

1. c(S, x) = y or c(S, y) = x,

2. c(S, x) = z 6= c(S \ y, x) or c(S, y) = z 6= c(S \ x, y),
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3. c(S, x) = c(S, y).

Then in each case, our model implies that there is a path between x and y in any

set containing S. The first case is obvious. For the second one, an irrelevant alternative

can cause choice reversal only if it is on the path between the starting point and the

chosen alternative. The last one follows from (1) and the fact that c(S, x) = c(S, y) = z

for some z ∈ S.

As an example, suppose c({x, y, z, t}, x) = t 6= c({x, z, t}, x) and c({x, y, z}, y) = z.

Proposition 1 is not useful with these observations. However, the choice reversal pattern

tells us that there is a path between x and y in {x, y, z}. Since z is chosen when the

choice problem is ({x, y, z}, y) we also learn that there is a path between y and z in

{x, y, z}. Then it must also be true that there is a path between x and z in {x, y, z}

through y.

Formally, for any x, y ∈ T , define

γ̂T (x, y) = 1 if there exists S ⊆ T such that one of the above is observed

and let γT (x, y) = 1 if there exists {x1, . . . , xn} ⊆ T with x1 = x and xn = y such that

γ̂T (xi, xi+1) = 1 for i < n. The following proposition says that if γT (x, y) = 1, then we

are guaranteed that there exists a path between x and y in T .

Proposition 3. Suppose c is a network choice. If γT (x, y) = 1, then there exists a

path between x and y in T .

3 Limited Search: K-step

In this section, we introduce bounded rationality in our framework. Recall that in the

original model the agent considers all the alternatives that appear in her perceived

network. In reality, if the product networks are not sparse the search process can

take a long time. For example, if our Netflix consumer’s perceived network is the

same as the Netflix’s original huge network, she will end up spending a lot of time to

uncover all available options. One might imagine that due to other limitations (such as

time pressure, limited cognitive capacity) consumer terminates her search after certain

steps. Here we consider an agent who has some search cost or experiences fatigue after

a certain number steps in a search process.
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We assume that the agent starts searching from a certain starting point and consid-

ers all the alternatives that are linked to the starting point. The decision maker stops

search after K steps where K ≥ 2. For example, if K = 2, then the decision maker

only considers the starting point and the alternatives which are linked to the starting

point. If the number of steps is larger than the number of alternatives, then this model

reduces to our baseline model. We provide a characterization forK-step network choice

for any fixed K and discuss the properties the consideration sets resulting from K-step

search satisfy.

Consider an agent faced with the choice problem (S, x). The K-step consideration

set is given by

NK
x (S) = {y ∈ S|∃ {x1, . . . , xk} ⊆ S such that x1 = x, xk = y, k ≤ K,

and γ(xi, xi+1) = 1 for i < k}

We say that an agent makes K-step network choice if the agent picks the best element

in the K-step consideration set.

Definition 3. A choice function c is a K-step network choice if there exists a preference

≻ over X and a symmetric link function γ such that

c(S, x) = argmax(≻, NK
x (S))

where NK
x (S) is defined as above.

The following example illustrates the properties of K-step network choice.

Example 3. Remember Efe from Example 1. Suppose Efe always stops the search

after two steps due to his cognitive limitations. His choice data we observe will be as

follows.

xyzt xyz xyt xzt yzt xy xz xt yz yt zt

x x x x x x x x

y x x x z x z y

z t z t t z z t

t t t t t t t t

One interesting feature of Efe’s choice data is that for a fixed starting point, Efe

acts “as if” he is classical utility maximizer. For example, if we only have choice
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data with the starting point y and we do not observe the starting point we will verify

that Efe’s behavior satisfies WARP. However, our revealed preference relation will be

x ≻ z ≻ y ≻ t. In other words, we will mistakenly reveal that t is the worst alternative

even though it is the best alternative. With richer choice data having observations

with multiple starting points we can observe that Efe’s choices depend on the starting

point which is in contrast to the standard model.

Characterization

Before moving on to characterization, we first show the properties the consideration

sets arising from K-step network choice satisfy. Lemma 2 shows that if a collection of

consideration set mappings {Γx}x∈X satisfies the four properties described below, then

we can treat them as a K-step consideration set on a product network.

For any set S we use the notation P≤K(S) to denote all nonempty subsets of S

with at most K elements. We now state these properties.

B.1 (Upward Monotonicity) If y ∈ Γx(T ), then y ∈ Γx(S) for all S ⊇ T .

B.2 (Symmetry) Suppose S ∈ P≤K(X). If y ∈ Γx(S), then Γy(S) = Γx(S).

B.3 (Path Connectedness) If z ∈ Γx(S), z 6∈ Γx(S \ y), then y ∈ Γx(S \ z) and

z ∈ Γy(S \ x).

B.4 (Contraction) If y ∈ Γx(S), then there exists T ∈ P≤K(S) such that y ∈ Γx(T ).

The first property is upward monotonicity which says that as choice sets get bigger,

the consideration sets do not get smaller. The idea for this property is the same as

in the original model. When there are more alternatives available, there are also more

alternatives that can potentially be reached in K steps.

The second property is a modified version of symmetry that we have in the main

model. Recall that in the main model, we showed that if y is reachable from x in S,

then the consideration sets corresponding to choice problems (S, x) and (S, y) must be

the same. This is no longer true in K-step search model since an alternative that is

reachable from y in K steps is not necessarily reachable from x in K steps. However,

if the choice set has at most K alternatives, then symmetry follows.
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The third property is path connectedness that we have in the main model. It says

that if z is reachable from x in S, but not in S \ y, then y must be on the path from x

to z. The fact that the search is K-step does not affect this property.

The last property is contraction which says that if y is reachable from x in S, then

there must be a subset T of S consisting of at most K alternatives such that y is

reachable from x in T . To see why this must be true, consider the set consisting

of x, y, and the alternatives which connect x to y. This set must have at most K

alternatives.

Lemma 2. {Γx}x∈X satisfies Upward Monotonicity, Symmetry, Path Connectedness,

and Contraction if and only if there exists a symmetric link function γ such that

Γx(S) = NK
x (S) for all S.

Even though Lemma 2 is useful in understanding the properties of consideration

sets, since we usually do not have data on consideration sets it does not help us in

verifying whether the agent makes a K-step network choice. We now propose four

axioms on choices characterizing K-step network choice.

The first axiom says that every choice set has some dominant alternative: for any

set S, there exists some alternative x∗ that is the best in S. Suppose given a choice

problem (T ′, z), the agent picks x∗. Then, if we extend the choice set and make the

choice problem (T, z), the agent must still consider x∗. Since x∗ is the best element in

S, if the agent picks an alternative that belongs to S it must be x∗.

Axiom 4. (Dominant Alternative) For any S, there exists x∗ ∈ S such that for any

z ∈ T ′ ⊂ T , if c(T ′, z) = x∗ and c(T, z) ∈ S, then c(T, z) = x∗.

Axiom 4 only talks about the existence of such an alternative. If we find some

choice set such that no alternative satisfying Axiom 4 exists, then we can conclude

that the agent does not follow K-step network choice.

Axiom 5 is a modification of Replacement axiom that we have in the main model.

It says that if for some choice set T , the starting point is abandoned for another

alternative, then replacing the original starting point with the chosen alternative does

not alter the choice for any choice set containing T as long as the choice set does not

have more than K alternatives.

Axiom 5. (Replacement) If c(T, x) = y and T ⊆ S ∈ P≤K(X), then c(S, x) = c(S, y).
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To see why it holds in our model, suppose the agent chooses y when the choice

problem is (T, x). Then y is reachable from x in T inK steps. By Upward Monotonicity

and Symmetry properties of consideration sets, for any choice set S, that contains T

and has at mostK alternatives, the consideration sets corresponding to choice problems

(S, x) and (S, y) must be the same. Therefore, the agent must make the same choice.

Axiom 6 is a modification of Choice Reversal axiom that we had in the main model.

In K-step model get choice reversal axiom holds if the choice set does not have more

than K alternatives.

Axiom 6. (Choice Reversal) If c(S, x) = z 6= c(S \ y, x) for S ∈ P≤K(X), then

c(S \ x, y) = z and c(S \ z, x) = c(S \ z, y).

To see why the original version is no longer true, suppose the choice set S has more

than K alternatives and c(S, x) = z 6= c(S \ y, x). This tells us that z is reachable

from x in S in K steps, but not in S \ y. Then, y must be on the path from x to z. In

other words, z is reachable from y in S \ x in K steps. However, there may be some

alternative t ∈ S \ x that is more preferred to z and is reachable from y in S \ x in K

steps, but not from x in S. Therefore, it is not necessarily the case that c(S \x, y) = z.

By a similar argument, c(S \ z, x) = c(S \ z, y) is not necessarily true either. If the

choice set S has at most K alternatives, then we are back to the main model, and the

choice reversal axiom holds.

The last axiom is contraction which says that if y is chosen when the choice problem

is (S, x), then there must exist a subset T of S with at most alternatives K such that

y is chosen when the choice problem is (T, x).

Axiom 7. (Contraction) If c(S, x) = y, then there exists T ∈ P≤K(S) such that

c(T, x) = y.

To see why it is true note that if c(S, x) = y, then y is reachable from x in S in at

most K steps. Consider T which consists of x, y, and the alternatives connecting x to

y. c(S, x) = y implies that y is preferred to all the other alternatives in T . Therefore,

we must have c(T, x) = y.

Theorem 2 says that Axiom 4-7 are necessary and sufficient to characterize K-step

network choice.

Theorem 2. A choice function c satisfies Dominant Alternative, Replacement, Choice

Reversal, and Contraction if and only if it is a K-step network choice.
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Revealed Preference and Network

In this section, we discuss how one can reveal preference and network given that the

agent makes K-step network choice. First, notice that since K ≥ 2 network revelation

is exactly the same as in the main model for all K. In particular, x revealed to be

linked to y if and only if c({x, y}, x) = c({x, y}, y), and x is revealed not to be linked

to y if and only if c({x, y}, x) 6= c({x, y}, y).

Remember Efe’s choices from Example 3. We can partially reveal his preference as

follows. Firstly, c({x, y}, y) = x and c({y, z}, y) = z implies that x ≻ y and z ≻ y.

That is because in both cases the starting point y can be abandoned only if the chosen

alternative is better than the starting point. Furthermore, c({z, t}, z) = t implies t ≻ z.

The choice data with starting points x and t are not useful in revealing his preference

since in both cases the starting points are always chosen. However, we can still reveal

preference between x and z. Notice that c({y, z}, y) = z implies that z is linked to y.

Therefore, it must also be considered when the choice problem is ({x, y, z}, y). Since

c({x, y, z}, y) = x we conclude that x ≻ z. There are two possible preferences that

can explain the choice data: x ≻1 t ≻1 z ≻1 y and t ≻2 x ≻2 z ≻2 y. The preference

between x and t is not identified.

In general, for any starting point, an alternative that is chosen in a bigger set

must be more preferred. That is an implication of Upward Monotonicity property of

consideration sets. For any x 6= y, we define

xPy if there exists z ∈ X and T ⊂ S ⊆ X such that c(S, z) = x and c(T, z) = y

Let PR denote the transitive closure of P . It is easy to see that if xPRy, then x must

be revealed preferred to y. Proposition 4 says that if x is revealed to be preferred to y,

then we must also have xPRy. To see why this is true, suppose x is revealed preferred

to y. Then, there must be a choice problem such that x is chosen while y is being

considered. In other words, there exist z ∈ S and T ⊆ S such that c(S, z) = x and

c(T, z) = c(T, y). The second condition guarantees that y is considered in the choice

problem (S, z). Now if c(T, z) = y, then we have xPy. If c(T, z) = t = c(T, y), then

we have xPt and tPy and hence xPRy.

Proposition 4. Suppose c is a K-step network choice. Then

• x is revealed to be preferred to y if and only if xPRy,
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• x is revealed to be linked to y if and only if c({x, y}, x) = c({x, y}, y).9

4 Unobserved Starting Points

In the previous sections, we assume that we can observe the starting point of the agent.

Here, we investigate network choice with standard choice data. We first show that if

we impose no structure on starting points, then any choice behavior can be justified.

Suppose we observe choice function c where c(S) is the element chosen by the agent

when the choice set is S. If our model is correct, then we must have c(S) = c(S, x)

where x is a starting point in S. If any alternative in S can be a starting point (i.e.,

there is no condition on how starting points in different sets are related), then we can

let c(S) = c(S, c(S)) for all S. That is, the agent always chooses the starting point.

But then any choice behavior is possible under this model. Therefore, the model does

not make any prediction.

In what follows, we impose a structure on starting points that helps us infer prefer-

ences and network with standard choice data. Firstly, following Salant and Rubinstein

[2008] and Masatlioglu and Nakajima [2013] we assume that we observe induced choice

correspondence where each possible choice corresponds to a different starting point.

The induced choice correspondence reflects the data available to an outside observer,

who knows that the choices of the decision maker are affected by the starting point

but lacks information about the actual starting point. Salant and Rubinstein explore a

model in which the decision maker is allowed to make different choices under different

frames. Given a choice correspondence C, the model is given by C(S) = {x ∈ S|x =

c(S, f) for some f ∈ F} where F is the set of frames and c(S, f) is frame dependent

choice function. Masatlioglu and Nakajima use a similar idea with starting points.

In the second model, we assume that the agent’s starting point is random. Hence,

the induced choice is probabilistic even though the network is deterministic. Again,

an outside observer, who views the probabilistic choices of the decision maker, knows

that the starting points are stochastic and but does not have information on the actual

starting point. Under this assumption, our model becomes is a generalization of Luce

model (Luce [1959]) and the standard model. If all the alternatives in the product

network are isolated (i.e., no links between any two alternatives exist), then the choice

probabilities correspond to Luce probabilities. If the product network is complete

9The proof of Proposition 4 directly follows the proof of Theorem 2.
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(i.e., any two alternatives in the product network are linked), then the randomness in

starting point has no effect and the decision maker always chooses the best available

alternative, which reduces the model to the standard model.

4.1 Choice Correspondence

Suppose the decision maker actually follows a network model denoted by c, but we do

not observe her starting point. Let C stand for an induced choice correspondence where

for every alternative x in C(S) there exists a starting point y such that x = c(S, y).

In other words, x maximizes preference among all reachable alternatives from y in S.

Formally,

Definition 4. A choice correspondence C is an induced network choice if there exists

a preference relation ≻ over X and a symmetric link function γ such that

C(S) = {x ∈ S|x = argmax(≻, Ny(S)) for some y ∈ S}

where Ny(S) is defined as before.

Suppose we observe that the decision maker chooses different alternatives when

faced with the same choice set. In standard theory, this would happen only if the

decision maker is indifferent between chosen alternatives. However, in our model the

decision maker with strict preference over all alternatives may still choose different

alternatives when faced with the same choice set if the choice set is not connected

(there are alternatives in the choice set such that no path between them exists).

The following example illustrates the properties of induced network choice.

Example 4. Remember Efe from Example 1. Let’s assume that we do not observe the

starting point. Instead we observe his induced network choice. That is,

S xyzt xyz xyt xzt yzt xy xz xt yz yt zt

C(S) t x {x, t} {x, t} t x {x, z} {x, t} z {y, t} t

For example, C({x, y, z, t}) = t implies that no matter what the starting point is

in {x, y, z, t} Efe always picks the alternative t. Notice that for any choice set, the

choices we observe is just the vertical summation of the choices in Example 1. In other
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words, in both choice data we observe all possible choices, but here we do not observe

the relation between starting points and choices.

One interesting thing about this choice behavior is that even though x is not domi-

nated in any of the binary comparisons, x is not chosen when the choice set is {x, y, z, t}.

In addition, even though t is uniquely chosen when the choice set is {x, y, z, t} removal

of y or z changes the choice behavior. These are the types of behavior that are not

allowed in the standard model. Notice that for any choice set a unique alternative

will be chosen if and only if the choice set is connected. In this example, {x, y, z, t},

{x, y, z}, and {y, z, t} are connected sets with more than 2 alternatives.

Characterization

Before moving on to characterization notice that using the symmetry property of con-

sideration sets we can write the induced network choice as

C(S) = {x ∈ S| x = argmax(≻, Nx(S))}

The alternative representation says that given a choice set S, an alternative x is chosen

if and only if it is the best alternative among all the alternatives reachable from x in S.

But if y is reachable from x in S or vice versa, then the consideration sets corresponding

to choice problems (S, x) and (S, y) are the same by A.2. Therefore, the original and

the alternative representations are exactly the same.

We propose four simple axioms which characterize induced network choice. Axiom

8 is the standard contraction axiom. It says that if x is chosen when the choice set S,

then x must also be chosen in any subset of S containing x.

Axiom 8. (Contraction) If x ∈ C(S), then x ∈ C(T ) for all x ∈ T ⊆ S.

Note that Axiom 8 is a direct implication of the monotonicity property of consid-

eration sets. Since consideration sets can only shrink as the choice set gets smaller, an

alternative that is chosen in a bigger choice set must also be chosen in a smaller choice

set as long as it is available.

Contraction axiom tells us what we should expect if x is chosen in some choice set

S. Axiom 9 tells us what we should expect if x is not chosen. In particular, it posits

the existence of an alternative y that dominates x. That is, if x is not chosen when the
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choice set is S, then there must exist an alternative y and a subset T of S containing

x such that y is uniquely chosen.

Axiom 9. (Dominating Alternative) If x 6∈ C(S), then there exist y ∈ C(S) and

x ∈ T ⊆ S such that C(T ) = y.

To see why Axiom 9 holds, suppose x is not chosen when the choice set is S. Then,

x is not the best element in Nx(S). Suppose the best element in Nx(S) is y and let

T = Nx(S) ⊆ S. Then, since T is a connected set meaning that exists a path between

any two alternatives, y must be uniquely chosen when the choice set is T .

Axiom 10 is similar to standard expansion property. It says that if x is uniquely

chosen when the choice set is T , y is uniquely chosen when the choice set is S, and T

and S have a nonempty intersection, then either x or y must be uniquely chosen when

the choice set is T ∪ S.

Axiom 10. (Expansion) If C(T ) = x and C(S) = y for T ∩S 6= ∅, then C(T ∪S) = x

or y.

To see why it holds, suppose x is chosen when the choice set is T and y is chosen

when the choice set is S. In our model, this can only happen if T and S are connected

sets. If T and S have a nonempty intersection, then T ∪ S must also be a connected

set. Therefore, a unique element must be chosen when the choice set is T ∪ S. Given

that x is the best alternative in T and y is the best alternative in S, the only two

possible choices are x and y.

The next property follows from an observation that given a network we can divide

any connected set into two connected sets with a nonempty intersection.

Axiom 11. (Separability) Suppose |S| ≥ 3. If C(S) = x, then there exist non-singleton

T1, T2 ⊂ S with T1 ∩ T2 6= ∅ and T1 ∪ T2 = S such that C(T1) = x and C(T2) = y for

some y ∈ S.

Suppose x is uniquely chosen when the choice set is S. Then, S must be a connected

set. Given the network structure we can separate S into two connected sets, say T1

and T2, with a nonempty intersection. If x is in T1, then x must be uniquely chosen

when the choice set is T1, and the best element in T2 must be uniquely chosen when

choice set is T2.
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Theorem 3 says that Axiom 8-11 are necessary and sufficient to characterize the

induced network choice.

Theorem 3. A choice correspondence C satisfies Contraction, Dominating Alterna-

tive, Expansion, and Separability if and only if it is an induced network choice.

Revealed Preference and Network

Given our results for revealed preference and network in the main model, it is easy

to extend it to the case with unobserved starting points. In the model with observed

starting points, we found that x is revealed to be preferred to y if and only if there

exists S containing x and y such that c(S, y) = x. If there exists such S, then let T be

a set containing x, y, and the alternatives on the path from x to y in S. Since T is a

connected subset of S it has to be the case that c(T, z) = x for all z ∈ S. Given this

observation, we reveal that x is preferred to y if and only if there exists some choice

set containing x and y such that x is chosen no matter what the starting point is. In

fact, not observing starting points does not lead to any losses in preference revelations.

Similarly, in the model with observed starting point we reveal that x is linked y if

and only if c({x, y}, x) = c({x, y}, y). With unobserved starting point this corresponds

to the case when C({x, y}) is a singleton. If c({x, y}, x) 6= c({x, y}, y) or C({x, y})

is not a singleton, we reveal that x is not linked to y. The product network is fully

revealed in the model with unobserved starting point as is the case in the model with

observed starting point.

The following corollary summarizes the results.

Corollary 1. Suppose C is a network choice. Then,

• x is revealed to be preferred to y if and only if there exists S ⊇ {x, y} such that

C(S) = x,

• x is revealed to be directly linked to y if and only if C(S) is a singleton.10

10The proof of Corollary 1 directly follows the proof of Theorem 3.
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4.2 Probabilistic Starting Point

We now assume that the starting point is determined probabilistically. That is, each

alternative could be the starting point with some positive probability. The induced

choice, then, is probabilistic even though the network is deterministic. There are many

reasons why starting point can be random. For example, Amazon advertises different

alternatives on different days on its front page. We can get different recommendations

from different people we encounter. It is also possible that when we explore a certain

category the first alternative that we are reminded of depends on the environment we

are in.

To model this we assume there is a probability distribution β over X . β(x) is the

probability of x being the starting point when the choice set is X . We assume that

every element in X has a positive probability of being a starting point: β(x) > 0 for

all x ∈ X . Then given a choice set S, the probability that x is a starting point in S is

given by β(x)∑
y∈S β(y)

= β(x)
β(S)

.

Let p(x, S) denote the probability of x being selected when the choice set is S. We

say that p is a network choice if p(x, S) is the sum of probabilities of different starting

points for which x is the final choice.

Definition 5. A probabilistic choice p is a network choice if there exists a preference

relation ≻ over X, a symmetric link function γ, and a probability distribution β over

X such that

p(x, S) =
∑

y∈S
x=argmax(≻,Ny(S))

β(y)

β(S)

where β(S) =
∑

y∈S β(y) and Ny(S) is defined as before.

There are two special cases of this model.

1. If every alternative is in isolation in the network, (that is Nx(S) = x), then the

model reduces to Luce rule.

p(x, S) =
β(x)∑
y∈S β(y)

2. If the network is complete, (that is, Nx(S) = S for all x and S,) then the model
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reduces to standard model. Hence there is no randomness in the choice.

p(x, S) =




1 if x = argmax(≻, S)

0 if x 6= argmax(≻, S)

Recall that if x ∈ Ny(S), then by A.2, Nx(S) = Ny(S). This implies an alternative

represenation for network choice given by

p(x, S) =





β(Nx(S))
β(S)

if x = argmax(≻, Nx(S))

0 if x 6= argmax(≻, Nx(S))

In other words, if x is the best element in it’s neighborhood, then the probability of

it being chosen is given by the measure of its neighborhood divided by the measure of

the choice set. If x is not the best element in it’s neighborhod, then it is never chosen.

Example 5. Let’s revisit Efe’s choices. We assume that each alternative could be his

starting point with equal chances (β(x) = β(y) = β(z) = β(t) = 1/4). Then his choice

data we observe will be as follows.

p(·, S) xyzt xyz xyt xzt yzt xy xz xt yz yt zt

x 0 1 2/3 1/3 - 1 1/2 1/2 - - -

y 0 0 0 - 0 0 - - 0 1/2 -

z 0 0 - 0 0 - 1/2 - 1 - 0

t 1 - 1/3 2/3 1 - - 1/2 - 1/2 1

Notice that if the choice set is connected, then the best alternative is chosen with

probability 1. For example, t is chosen with probability 1 when the choice set is

{x, y, z, t}. If the choice set is not connected, we can have multiple alternatives being

chosen with positive probability. For example, when the choice set is {x, y, t}, x is

chosen with 2/3 probability and t is chosen with 1/3 probability. The fact that x is

chosen more often does not reflect that it is more preferred than t. In fact, here t is

ranked higher than x in the preference ordering. The reason why x is chosen more often

is that it is the best alternative in the neighborhood of x and y in {x, y, t}, whereas

t is the best alternative only in the neighborhood of t in {x, y, t}. In addition, notice

that the probability ratio of two alternatives depends on the choice set.
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Characterization

First, notice that probabilistic choice is just an extension of the induced choice corre-

spondence model with the addition that we know exact choice probabilities. While,

in the induced model, we only know the support of the distribution, here the entire

distribution is given to us. Hence the four axioms characterizing the model with choice

correspondence must still hold. We state those axioms in the new framework below.

Axiom 12. (Contraction) If p(x, S) > 0, then p(x, T ) > 0 for x ∈ T ⊆ S.

Axiom 13. (Dominating Alternative) If p(x, S) = 0, then there exist y ∈ S with

p(y, S) > 0 and T ⊆ S containing x such that p(y, T ) = 1

Axiom 14. (Expansion) If p(x, S) = 1 and p(y, T ) = 1 where S ∩ T 6= ∅, then either

p(x, S ∪ T ) = 1 or p(y, S ∪ T ) = 1.

Axiom 15. (Separability) Suppose |S| ≥ 3 and p(x, S) = 1. Then, there exist non-

singleton T1, T2 ⊂ S with T1 ∪ T2 = S and T1 ∩ T2 6= ∅ such that p(x, T1) = 1 and

p(y, T2) = 1 for some y ∈ S.

In addition to these four axioms, we need axioms on choice probabilities. Recall that

in Luce model we have menu independence property which says that choice probability

ratio of two alternatives should not depend on the choice set. Since our model is an

extension of Luce model this property is no longer satisfied in general. However, under

certain conditions given by Axiom 16 we can have menu independence. In particular,

Axiom 16 says that the probability ratio of two alternatives x and y in two sets S and

S ∪ T will be the same if T is a connected set such that no alternative in T is linked

to alternatives in connected sets containing x or y.

Axiom 16. (Weak Menu Independence) Suppose p(x, S ∪ T ) > 0 and p(y, S ∪ T ) > 0

where {x, y} ⊆ S. If there exists z ∈ T with p(z, S ∪ T ) > 0 and p(z, T ) = 1, then

p(x, S ∪ T )

p(y, S ∪ T )
=

p(x, S)

p(y, S)

To see why this axiom holds, suppose x and y are chosen with positive probability

when the choice set is S. This can only happen if S has a connected subset S1 in which

x is the best alternative and a connected subset S2 in which y is the best alternative.

Suppose we extend the choice set by S ∪ T , and x and y are still chosen with positive
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probability. If T has no connections with S1 and S2, then we expect that the probability

ratio of x and y remains the same. That is because the measure of the neighborhood

of x and y stays the same in the bigger choice set. The fact that there is an alternative

z ∈ T with p(z, S ∪ T ) > 0 and p(z, T ) = 1 guarantees that T has no connections with

S1 and S2.

Axiom 17 is additivity property which allows us to write the ratio of choice proba-

bilities of x and y in some choice set as a sum of choice probability ratios. It says that

if S is a connected set in which x is the best alternative and T is a connected set in

which y is the best alternative, then the probability ratio of x and y in S ∪ T is the

sum of probability ratio of z and y in T ∪ z for z ∈ S.

Axiom 17. (Additivity) Suppose p(x, S) = 1 and p(y, T ) = 1. If p(x, S ∪ T ) ∈ (0, 1),

then

p(x, S ∪ T )

p(y, S ∪ T )
=

∑

z∈S

p(z, T ∪ z)

p(y, T ∪ z)

To see why it holds, suppose we have two connected sets S and T . Let x be the

best alternative in S and y be the best alternative in T and suppose x and y are chosen

with positive probability in S ∪ T . This can only happen if there are no links between

the alternatives in S and the alternatives in T . Then, the probability ratio of x and y

is just equal to the ratio of the measure of the neighborhood of x (the measure of S)

and the measure of the neighborhood of y (the measure of T ). Finally, note that the

measure of S is just the sum of the measure of each alternative in S.

Theorem 4 says that Axioms 12-17 are necessary and sufficient to characterize

probabilistic network choice.

Theorem 4. Probabilistic choice p satisfies Contraction, Dominating Alternative, Ex-

pansion, Separability, Weak Menu Independence, and Additivity if and only if it is a

network choice.

Revealed Preference and Network

The intution behind preference and network revelation is exactly similar to the intuiton

in the basic model. We showed that x is revealed to be linked to y if and only if

c({x, y}, x) = c({x, y}, y). In probabilstic choice this corresponds to p(x, {x, y}) = 0
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or 1. Similarly, x is revealed not to be linked to y if and only if p(x, {x, y}) ∈ (0, 1).

As before the product network is fully revealed.

In the main model, we showed that x is revealed to be preferred to y if and only

if there exists S containing x and y such that x is chosen no matter what the starting

point is. In probabilistic choice this corresponds to having a set S containing x and

y such that p(x, S) = 1. The revealed preference is exactly the same as the revealed

preference in the previous models.

The results are summarized in Corollary 2.

Corollary 2. Suppose p is probabilistic network choice. Then,

• x is revealed to be preferred to y if and only if there is S ⊇ {x, y} such that

p(x, S) = 1,

• x is revealed to be directly linked to y if and only if p(x, {x, y}) = 0 or 1.11

5 Random Network

So far we only discuss the deterministic networks. In this section, we investigate net-

work choice with a random network. The randomness of a network can arise from

two factors: (i) the exogenous product network that we take as given may be ran-

dom (for example, Amazon’s recommendation algorithm may produce random links

between alternatives), (ii) the decision maker may pay random attention to presented

alternatives. A general network choice with a random network can be very complex

and intractable. In this section, we consider a particular case which we believe is more

realistic and tractable than others. Here, given the realization of a random network,

the decision maker only considers alternatives which are linked to the starting point.

Since the links between alternatives are random, the decision maker’s consideration set

will be random. As we do not observe the realized consideration set, the choices the

agent makes will appear as random. Again, this is different than the random utility

models where randomness comes from utility rather than product network.

We assume that the decision maker stops searching after 2 steps, i.e., the decision

maker only considers the alternatives that are linked to the starting point. To define

11The proof of Corollary 2 directly follows the proof of Theorem 4.
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random networks, let γ(x, y) denote the probability that there is a link between x and

y. We assume that γ(x, x) = 1 and γ(x, y) ∈ (0, 1) for y 6= x. We also assume that

links are independent. Let Ax(D,S) denote the probability that x ∈ D ⊆ S is the

consideration set when the choice problem is (S, x). Since the search is 2-step the

consideration set probabilities are given by

Ax(D,S) =
∏

y∈D

γ(x, y)
∏

z∈S\D

(1− γ(x, z))

In other words, the decision maker’s consideration set is D if all the alternatives in D

are linked to x and none of the alternatives in S \D are linked to x.

Let px(y, S) denote the probability of y being selected when the choice problem is

(S, x). We denote a probabilistic network choice by P where P (y, (S, x)) = px(y, S).

We say that P is a probabilistic 2-step network choice if, for all (S, x), px(y, S) is the

event that a consideration set in which y is the best element is realized.

Definition 6. P is a probabilistic 2-step network choice if there exist a preference

relation ≻ over X and a symmetric link function γ satisfying γ(x, x) = 1 and γ(x, y) ∈

(0, 1) for y 6= x such that

px(y, S) =
∑

y is ≻-best in D

Ax(D,S)

where Ax(D,S) is defined as above.

The following example illustrates probabilistic 2-step network choice.

Example 6. Suppose Mehmet’s preference among three alternatives is x ≻ z ≻ y, and

his probabilistic product network is as below.

z

y

x

0.3

0.4

0.5

We now calculate px(·, {x, y, z}). Given that x is the best alternative and it is the

starting point, x will be chosen with probability 1. Hence we have px(x, {x, y, z}) = 1
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and px(y, {x, y, z}) = px(z, {x, y, z}) = 0. It may seem that the magnitude of choice

probabilities reflects preference. This is not true. For example, when the choice set

is {x, y, z} and the starting point is y, x is chosen with 0.3 probability, but y and z

are chosen with 0.35 probability even though they are inferior to x. This is due to

randomness in the network.

Characterization

There are three axioms which characterize probabilistic 2-step network choice. Axiom

18 is the standard Starting Point Contraction axiom in the probabilistic domain. It

says that as the choice set gets bigger, the probability that the starting point is chosen

can only get smaller.

Axiom 18. (Starting Point Contraction) For any S and x ∈ T ⊆ S, px(x, T ) ≥

px(x, S) > 0.

Axiom 18 holds in our model because as the choice set gets bigger, there are po-

tentially more preferred alternatives which are realized to be linked to the starting

point.

The second axiom says that for any choice set, there must exist a unique dominant

alternative, i.e., the alternative which is never abandoned for other alternatives if it is

the starting point.

Axiom 19. (Dominant Alternative) For any S, there exists unique x ∈ S such that

px(x, S) = 1.

To see why Axiom 19 is true in our model, given any choice set S pick the most

preferred alternative in S. This alternative must be chosen with probability one if it

is the starting point. For uniqueness, note that any alternative that is not ranked the

highest in the preference ordering has a positive probability of being linked to the most

preferred alternative which implies that it cannot be chosen with probability one when

it is the starting point.

The last axiom tells us what happens if the dominant alternative is removed from

the choice set. Suppose we are given a choice problem (S, x) in which z is the dominant

alternative. The axiom tells that the probability that y is chosen in the choice problem

(S, x) is equal to the probability that y is chosen in the choice problem (S \ z, x) times

the probability that x is chosen in the choice problem ({x, z}, x).
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Axiom 20. (Removal of Dominant Alternative) Suppose pz(z, S) = 1. Then,

px(y, S) = px(y, S \ z)px(x, {x, z})

Intuitively, for y to be chosen in the choice problem (S, x) it must dominate all

the other alternatives in the choice problem (S \ z, x) and x must dominate z in the

choice problem ({x, z}, x). Since the links are independent this gives us multiplicative

formula.

Theorem 5 gives a characterization of probabilistic 2-step network choice.

Theorem 5. P satisfies Starting Point Contraction, Dominant Alternative, and RDA

if and only if it is a probabilistic 2-step network choice.

Revealed Preference and Network

Since the probability that any two distinct alternatives are linked is strictly positive,

it suffices to check binary choice sets to reveal preference and network. We reveal that

x is preferred to y if and only if x is chosen with positive probability in the choice

problem ({x, y}, y), or alternatively, if and only if x is chosen with probability one in

the choice problem ({x, y}, x). Since for any choice set, there exists a unique dominant

alternative the two statements are equivalent. Note that this also implies complete and

transitive preference relation.

To reveal network we need to check the probability that x is chosen in the choice

problem ({x, y}, y) and the probability that y is chosen in the choice problem ({x, y}, x).

By Dominant Alternative axiom, one and only one of these two probabilities will be

equal to zero. The maximum of these probabilities is equal to the probability that x

is linked to y.

The following corollary summarizes the results.

Corollary 3. Suppose P is a probabilisitic 2-step network choice. Then,

• x is revealed to be preferred to y if and only if py(x, {x, y}) > 0,

• γ(x, y) = max{px(y, {x, y}), py(x, {x, y})}.12

12The proof of Corollary 3 directly follows the proof of Theorem 5.
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6 Related Literature

Behavioral Search

The closest paper we know of is Masatlioglu and Nakajima [2013]. They provide a

framework to study behavioral search by utilizing the idea of consideration sets, which

evolve dynamically. Their baseline model is quite different than ours. First, their

motivation is entirely different, which requires a much more general model. Second,

their model is dynamic because interim decisions about what items to pay attention

to affect the evolution of the consideration set.

They also study a special case, which is called Markovian consideration set. This

special case can be represented as a network. However, their dynamic feature makes

this model distinct from ours. Unlike our model where the consumer “clicks on” all

linked alternatives, in their model the agent only “clicks on” the best linked alternative.

Hence, the consideration sets are preferences dependent. Therefore, each model follows

a different procedure to reach a final decision.

Given a fixed preference relation, the consideration sets of the Markovian model in

Masatlioglu and Nakajima [2013] violate Upward Monotonicity and Symmetry prop-

erties, which is implied by our model (both the baseline model and K-step version).

While this established the difference in terms of consideration sets, the models could

still generate similar choice behavior. We show that they are also distinct in terms of

observed choice behaviors. We now provide an example of choice behavior that can be

explained by the Network model but not the Markovian model and vice versa.

Example 7. Choice behavior that can be explained by the Network model but not the

Markovian model.
xyz xy xz yz

x z x x

y z x z

z z z z

This can be explained by the Network model as follows.

But this choice behavior cannot be explained by the Markovian model since in the

Markovian model c({x, z}, x) = x and c({x, y}, x) = x implies c({x, y, z}, x) = x.

Example 8. Choice behavior that can be explained by the Markovian model but not
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x

y

z

the Network model.
xyz xy xz yz

x x x x

y z x z

z z z z

This choice data can be explained by the Markovian Model as follows.

x

y

z

But this choice behavior cannot be explained by the Network model since Replace-

ment Axiom is violated as c({x, y}, y) = x, but c({x, y, z}, x) 6= c({x, y, z}, y).

In general, it is difficult to say which model approximates consumer behavior better

because they utilize different choice procedures. We believe depending on the task one

model might fit the consumer behavior more accurately than the other. We hope that

future empirical and/or experimental work will shed light on this issue.

Caplin and Dean [2011] also study search by employing the revealed preference

approach. They assume that an outside observer can view the entire path followed

during the search. The main difference is that, in our model, the path is not an input

rather an output.

Reference Dependent Choice

The network choice is also related to the literature on reference-dependent preferences,

especially if we interpret the starting point as the reference point. Even under this
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interpretation, our model differs from previous models of reference-dependent choices

such as Tversky and Kahneman [1991], Masatlioglu and Ok [2005, 2013], Dean et al.

[2014]. Contrary to ours, in TK, the reference point affects the utility of individual. In

terms of choice behavior, their loss aversion model allows strict cycles: a DM strictly

prefers y to x when endowed with x, strictly prefers z to y when endowed with y, and

strictly prefers x to z when endowed with z, i.e., x ≻z z ≻y y ≻x x. In the network

choice, the starting point is abandoned only when there is a welfare improvement, so

their model is not a special case of the network choice. For a fixed starting point, while

our model allows choice reversals, their model satisfies WARP. Therefore, these two

models are independent.

Masatlioglu and Ok [2005, 2013] propose a reference-dependent choice model con-

sisting of a simple two-stage procedure: elimination and optimization. In the elimi-

nation stage, the decision maker discards all alternatives which are “unambiguously”

better than the reference point. In the optimization stage, she simply chooses the best

alternative from the set of surviving alternatives. The consideration sets of both MO

2005 and MO 2014 violate Symmetry and Path Connectedness properties. On the

other hand, both MO 2005 and MO 2014 impose that Γx(T ) = T ∩ Γx(S) for T ⊂ S,

which is violated in our model. In terms of choice, the models MO 2005 and 2014 do

not allow choice reversals for a fixed status quo but the network choice does.

Dean et al. [2014] propose a reference-dependent model in which the attention is

limited. Γx(S) = (A(S) ∪ x) ∩ Q(x) where x ∈ A(S) implies x ∈ A(T ) if x ∈ T ⊂ S.

The consideration sets of this model violate all our properties. Indeed, they assume

downward monotonicity, which is the exact opposite of upward monotonicity property

in our model. As opposed to our model, they allow the decision maker not to choose

the reference point in the smaller choice set while choosing it in the larger choice set.

Instead, they require that if the reference point is chosen in the smaller choice set, then

it must also be chosen in the larger choice set.

Limited Consideration

In the recent literature on limited consideration, a decision maker chooses the best

alternative from a small subset of the available alternatives. Such models include

the rational shortlisting (Manzini and Mariotti [2007] , considering only alternatives

that belong to the best category (Manzini and Mariotti [2012]), and considering only

alternatives that are optimal according to some rationalizing criteria (Cherepanov et al.
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[2013]), limited attention (Lleras et al. [2010], Masatlioglu et al. [2012]. While these

models have the element of limited attention, choices are not affected by a starting

point. Even though the domains of these models are different than ours, we contrast

our model with these models by fixing the starting point. The rest of the section, we

focus on choice behavior for a fixed starting point.

These models satisfy one of two following properties. The first condition says that

the consideration set is unaffected by removing an alternative which does not attract

attention.

x /∈ Γ(S) implies Γ(S) = Γ(S \ x).

The second captures the idea that attention is relatively more scarce in larger choice

sets. That is, if an alternative attracts attention in a larger set, it also attracts attention

in subsets of it in which it is included.

x ∈ Γ(S) implies x ∈ Γ(T ) if x ∈ T ⊂ S.

It is routine to show that for a fixed starting point, Upward Monotonicity, Symme-

try, and Path Connectedness imply the first condition. On the other hand, our model

assumes the opposite of the second condition.

Random Attention

Manzini and Mariotti [2014] stochastic choice model is closely related 2-step probabilis-

tic network model. The main difference is that MM fix outside option as a “starting

point” while we consider different alternatives in the choice set as different potential

starting points. For a fixed starting point, it can be shown that i-Asymmetry and

i-Independence in MM imply Axiom 20 in our model.

Brady and Rehbeck [2016] consider a modification of MM by relaxing the assump-

tion that the probability that a set D ⊆ S is a consideration set is independent of the

choice set. In particular, they assume there exists a probability measure π on X such

that

A(D,S) =
π(D)∑

D′⊆S π(D
′)

Obviously, for a fixed starting point, the 2-step network model is a subset of BR.

37



7 Conclusion

Many real life decision-making problems involve a search over a product network. In

this paper, we show how one can reveal preference and network from individual choice

data and provide characterizations of the models of decision making within a product

network. We explore the case of “perfectly rational” and “boundedly rational” agent,

observed and unobserved starting points, deterministic and random network.

There are several interesting open questions. Firstly, in this paper, we only discuss

symmetric links or undirected product network. An obvious open question is how the

implications of such a model change when the links are asymmetric. While we treat

the number of steps as an exogenously given, one can endogenize the number of search

steps that the decision maker takes. It is plausible that the number of search steps

depends on the complexity of product network. One can also think about alternative

ways of modeling bounded rationality. For example, there may be a temptation ranking

which determines what advertised products the decision maker considers. Lastly, one

can also consider a K-step random network model for any K.
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Appendix

Proof of Lemma 1

Proof. (⇐) A.1: Suppose y ∈ Γx(T ). Then, there exists {x1, . . . , xk} ⊆ T ⊆ S such
that x1 = x, xk = y, and γ(xi, xi+1) = 1 for i < k. By definition, y ∈ Γx(S).

A.2: Suppose y ∈ Γx(S). This implies that there exists {x1, . . . xj} ⊆ S with
x1 = x, xj = y, and γ(xi, xi+1) = 1 for i < j. If z ∈ Γy(S), then there exists
{xj , . . . , xk} ⊆ S such that xj = y, xk = z, and γ(xi, xi+1) = 1 for j ≤ i < k. Consider
{x1, . . . , xj , . . . , xk} ⊆ S. It satisfies the conditions that x1 = x, xk = z, γ(xi, xi+1) = 1
for i < k. Therefore, z ∈ Γx(S).

Now suppose z ∈ Γx(S). Firstly, let x
′
i = xj−i+1 for i ≤ j. Then, {x′

1, . . . , x
′
j} ⊆ S

satisfies the conditions that x′
1 = y, x′

j = x, and γ(x′
i, x

′
i+1) = 1 for i < j. Since

z ∈ Γx(S) there exists {x′
j , . . . , x

′
k} ⊆ S with x′

j = x, x′
k = z, and γ(x′

i, x
′
i+1) = 1

for j ≤ i < k. Consider {x′
1, . . . , x

′
j , . . . , x

′
k}. It satisfies the conditions that x′

1 = y,
x′
k = z, γ(x′

i, x
′
i+1) = 1 for i < k. Therefore, z ∈ Γy(S).

A.3: Suppose z ∈ Γx(S) and z 6∈ Γx(S \ y). Since z ∈ Γx(S) there exists
{x1, . . . , xk} ⊆ S with x1 = x, xk = z, and γ(xi, xi+1) = 1 for i < k. Further-
more, since z 6∈ Γx(S \ y) there exists j ∈ {2, . . . , k − 1} such that xj = y. Consider
{x1, . . . , xj} ⊆ S \ z. It satisfies the conditions that x1 = x, xj = y, and γ(xi, xi+1) = 1
for i < j. Therefore, y ∈ Γx(S \ z). Now consider {xj , . . . , xk} ⊆ S \ x. It satisfies
the conditions that xj = y, xk = z, and γ(xi, xi+1) = 1 for j ≤ i < k. Therefore,
z ∈ Γy(S \ x).

(⇒) Suppose {Γx}x∈X satisfies A.1-A.3. Let γ(x, y) = 1 if y ∈ Γx({x, y}). Note that
if y ∈ Γx({x, y}), then by A.2, Γy({x, y}) = Γx({x, y}). Therefore, γ(x, y) = γ(y, x)
for all x, y ∈ X . Given γ, we define Nx(S) as in the definition. Note that by Nx(S)
defined as such satisfies A.1-A.3. Firstly, we show that Nx(S) ⊆ Γx(S). Suppose
y ∈ Nx(S). Then, there exists {x1, . . . , xk} ⊆ S such that x1 = x, xk = y, and
xi+1 ∈ Γxi

({xi, xi+1}) for i < k. Therefore, by A.1, xi+1 ∈ Γxi
(S) for i < k, and by

A.3, Γxk−1
(S) = Γxk−2

(S) = · · · = Γx1
(S). Then, y = xk ∈ Γxk−1

(S) = Γx1
(S) = Γx(S).

Now we show that Γx(S) ⊆ Nx(S). The proof is by induction. Firstly, note that if
y ∈ Γx({x, y}), then y ∈ Nx({x, y}) by definition. Now suppose for all S with |S| < n
we have that y ∈ Γx(S) ⇒ y ∈ Nx(S). Pick S with |S| = n and suppose y ∈ Γx(S). If
there exists z ∈ S \ {x, y} such that y ∈ Γx(S \ z), then since |S \ z| < n we have that
y ∈ Nx(S \z) and by A.1, y ∈ Nx(S). Now suppose for all z ∈ S \{x, y}, y 6∈ Γx(S \z).
Pick one such z. Then, by A.3, z ∈ Γx(S \ y) and y ∈ Γz(S \ x). By induction
hypothesis, z ∈ Nx(S \ y) and y ∈ Nz(S \ x). By A.1, z ∈ Nx(S) and y ∈ Nz(S). By
A.2, Nx(S) = Nz(S) and therefore y ∈ Nx(S).
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Proof of Theorem 1

The proof of the “if part” is left to the reader. We prove the “only if part”.

For any x 6= y, define

xPy if and only if ∃ S ⊇ {x, y} such that c(S, z) = x for all z ∈ S

Claim 1. P is acyclical.

Proof. Suppose x1Px2P · · ·PxnPx1. Then, there exists S1, . . . , Sn with Si ⊇ {xi, xi+1}
for i < n and Sn ⊇ {x1, xn} such that c(Si, zi) = xi for all zi ∈ Si. Consider the set
T = S1 ∪ S2 ∪ · · · ∪ Sn. By Axiom 2, c(T, x1) = c(T, x2) = · · · = c(T, xn) and
c(T, zi) = c(T, xi) for all i. Therefore, c(T, x) = c(T, y) for all x, y ∈ T . Now by Axiom
1, we cannot have xi = c(T, xi) since for i > 1, xi ∈ Si−1 ⊆ T , but xi 6= c(Si−1, xi), and
x1 ∈ Sn ⊆ T , but x1 6= c(Sn, x1). Furthermore, for any z 6= {x1, . . . , xn}, we cannot
have z = c(T, z) since z ∈ Si ⊆ T for some i, but c(Si, z) 6= z. Hence we cannot assign
any alternative to c(T, x) without violating axioms. Therefore, P is acyclical.

Now let ≻ be a transitive completion of P . We define γ as follows:

γ(x, y) = 1 if and only if c({x, y}, x) = c({x, y}, y)

First, note that γ is symmetric. Define Nx(S) as

Nx(S) = {y ∈ S|∃{x1, . . . , xk} ⊆ S such that x1 = x, xk = y,

and γ(xi, xi+1) = 1 for i < k}

Claim 2. c(S, x) ∈ Nx(S).

Proof. Firstly, let S = {x, y}. If c({x, y}, x) = x, then the result is trivial. If
c({x, y}, x) = y, then by Axiom 2, c({x, y}, x) = c({x, y}, y) and hence y ∈ Nx({x, y}).
Now suppose the claim is true for all S with |S| < n. Let S with |S| = n be given.
If there exists z ∈ S such that c(S, x) = c(S \ z, x), then by induction hypothe-
sis, c(S, x) ∈ Nx(S \ z) and by A.1, c(S, x) ∈ Nx(S). Suppose for all z ∈ S \ x,
c(S, x) 6= c(S \ z, x). Pick z 6= c(S, x).13 By Axiom 3, c(S \ x, z) = c(S, x). By
induction hypothesis, c(S, x) ∈ Nz(S \ x) and by A.1, c(S, x) ∈ Nz(S). Further-
more, by Axiom 3, c(S \ c(S, x), x) = c(S \ c(S, x), z). By induction hypothesis,
c(S \ c(S, x), x) ∈ Nx(S \ c(S, x)) and c(S \ c(S, x), x) ∈ Nz(S \ c(S, x)). Then,
by A.2, Nx(S \ c(S, x)) = Nc(S\c(S,x),x)(S \ c(S, x)) = Nz(S \ c(S, x)) which implies
z ∈ Nx(S \ c(S, x)) and by A.1, z ∈ Nx(S). Finally, by A.2, Nx(S) = Nz(S) which
implies c(S, x) ∈ Nx(S).

13We can do this since |S| > 2.
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Claim 3. If y ∈ Nx(S), then c(Nx(S), y) = c(S, x)

Proof. Suppose y ∈ Nx(S). Then, there exists {x1, . . . , xk} ⊆ Nx(S) ⊆ S with
x1 = x, xk = y such that c({xi, xi+1}, xi) = c({xi, xi+1}, xi+1) for i < k. By Ax-
iom 2, c(Nx(S), x1) = c(Nx(S), x2) = · · · = c(Nx(S), xn) which implies c(Nx(S), x) =
c(Nx(S), y). By Claim 2, c(S, x) ∈ Nx(S), and therefore c(Nx(S), c(S, x)) = c(Nx(S), x).
Furthermore, by Axiom 2, c(S, x) = c(S, c(S, x)), and by Axiom 1, c(S, c(S, x)) =
c(Nx(S), c(S, x)). Therefore, c(Nx(S), y) = c(Nx(S), x) = c(Nx(S), c(S, x)) = c(S, x).

Claim 4. c(S, x) = argmax(≻, Nx(S)).

Proof. By Claim 2, c(S, x) ∈ Nx(S). By Claim 3, c(Nx(S), y) = c(S, x) for all y ∈
Nx(S). Therefore, by definition of ≻, either c(S, x) = y or c(S, x) ≻ y. This completes
the proof.

Proof of Lemma 2

Proof. (⇐) B.1: Suppose y ∈ Γx(T ). Then, there exists {x1, . . . , xk} ⊆ T ⊆ S such
that x1 = x, xk = y, k ≤ K and γ(xi, xi+1) = 1 for i < k. Then, by definition,
y ∈ Γx(S).

B.2: Suppose y ∈ Γx(S). This implies that there exists {x1, . . . xj} ⊆ S with
x1 = x, xj = y, j ≤ K, and γ(xi, xi+1) = 1 for i < k. If z ∈ Γy(S), then there exists
{xj , . . . , xk} ⊆ S such that xj = y, xk = z, k − j + 1 ≤ K, and γ(xi, xi+1) = 1 for
j ≤ i < k. Consider {x1, . . . , xj , . . . , xk} ⊆ S. Since |S| ≤ K it satisfies the conditions
that x1 = x, xk = z, k ≤ K, γ(xi, xi+1) = 1 for i < k. Therefore, z ∈ Γx(S).

Now suppose z ∈ Γx(S). Firstly, let x
′
i = xj−i+1 for i ≤ j. Then, {x′

1, . . . , x
′
j} ⊆ S

satisfies the conditions that x′
1 = y, x′

j = x, j ≤ K, and γ(x′
i, x

′
i+1) = 1 for i < j.

Since z ∈ Γx(S) there exists {x′
j , . . . , x

′
k} ⊆ S with x′

j = x, x′
k = z, k − j + 1 ≤ K,

and γ(x′
i, x

′
i+1) = 1 for j ≤ i < k. Consider {x′

1, . . . , x
′
j , . . . , x

′
k} ⊆ S. Since |S| ≤ K

it satisfies the conditions that x′
1 = y, x′

k = z, k ≤ K, and γ(x′
i, x

′
i+1) = 1 for i < k.

Therefore, z ∈ Γy(S).

B.3: Suppose z ∈ Γx(S) and z 6∈ Γx(S \ y). Since z ∈ Γx(S) there exists
{x1, . . . , xk} ⊆ S with x1 = x, xk = z, k ≤ K, and γ(xi, xi+1) = 1 for i < k.
Furthermore, since z 6∈ Γx(S \ y) there exists j ∈ {2, . . . , k−1} such that xj = y. Con-
sider {x1, . . . , xj} ⊆ S \ z. It satisfies the conditions that x1 = x, xj = y, j ≤ K, and
γ(xi, xi+1) = 1 for i < j. Therefore, y ∈ Γx(S \ z). Now consider {xj, . . . , xk} ⊆ S \ x.
It satisfies the conditions that xj = y, xk = z, k − j + 1 ≤ K, and γ(xi, xi+1) = 1 for
j ≤ i < k. Therefore, z ∈ Γy(S \ x).

B.4: Suppose y ∈ Γx(S). Then, there exists {x1, . . . , xk} ⊆ S such that x1 =
x, xk = y, k ≤ K and γ(xi, xi+1) = 1 for i < k. Let T = {x1, . . . , xk}. Then, |T | ≤ K
and y ∈ Γx(T ).
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(⇒) Let γ(x, y) = 1 if y ∈ Γx({x, y}). Notice that γ is symmetric since by B.2,
y ∈ Γx({x, y}) implies Γy({x, y}) = Γx({x, y}) ∋ x. Define NK

x (S) as before. Note
that NK

x (S) defined as such satisfies B.1-B.4. We first show that NK
x (S) ⊆ Γx(S). Let

y ∈ NK
x (S). Then, there exists {x1, . . . , xk} ⊆ S with x1 = x, xk = y, k ≤ K such

that xi+1 ∈ Γxi
({xi, xi+1}) for i < k. Let T = {x1, . . . , xk}. By B.1, xi+1 ∈ Γxi

(T ) for
i < k. Since |T | ≤ K, by B.2, Γx1

(T ) = Γx2
(T ) = · · · = Γxn

(T ). Therefore, y ∈ Γx(T ).
Since T ⊆ S by B.1, y ∈ Γx(S).

We now show that Γx(S) ⊆ Nk
x (S). The proof is by induction. Firstly, if S = {x, y},

the claim is obvious. Suppose the claim is true for all S with |S| < n. Let S with
|S| = n be given and suppose y ∈ Γx(S). By B.4, there exists T ⊆ S with |T | ≤ K
such that y ∈ Γx(T ). If T ⊂ S, then by induction hypothesis, y ∈ NK

x (T ) and by B.1,
y ∈ NK

x (S). If T = S, then |S| ≤ K. Since there exists no strict subset T of S with
y ∈ Γx(T ) we have that y 6∈ Γx(S \ z) for all z ∈ S \ x. Pick z distinct from x and y.
Now we have that |S| ≤ K, y ∈ Γx(S), and y 6∈ Γx(S \ z). By B.3, z ∈ Γx(S \ y) and
y ∈ Γz(S \ x). Then, by induction hypothesis, z ∈ NK

x (S \ y) and y ∈ NK
z (S \ x). By

B.1, z ∈ NK
x (S) and y ∈ NK

z (S). Since |S| ≤ K, by B.2, NK
x (S) = NK

z (S) = NK
y (S)

which implies y ∈ NK
x (S).

Proof of Theorem 2

We prove the “only if” part.

Let xPy if there exists z ∈ T ⊂ S such that c(S, z) = x and c(T, z) = y.

Claim 1. P is acyclic.

Proof. Suppose x1Px2P · · ·PxnPx1. Then, there exists {Ti, T
′
i , zi}

n
i=1 with zi ∈ T ′

i ⊂ Ti

such that c(Ti, zi) = xi, c(T
′
i , zi) = xi+1 for i < n, and c(T ′

n, zn) = x1. Consider the set
S = {x1, . . . , xn}. For all x ∈ S, there exists z ∈ T ′ ⊂ T such that c(T ′, z) = x and
c(T, z) ∈ S, but c(T, z) 6= x. This contradicts Axiom 4.

Let ≻ be a transitive completion of P . Define γ as

γ(x, y) = 1 if and only if c({x, y}, x) = c({x, y}, y)

and NK
x (S) as

NK
x (S) = {y ∈ S| ∃{x1, . . . , xk} ⊆ S with x1 = x, xk = y, k ≤ K

and γ(xi, xi+1) = 1 for i < k}

Claim 2. c(S, x) ∈ NK
x (S).
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Proof. First note that if c({x, y}, x) = x, then c({x, y}, x) ∈ NK
x ({x, y}). If c({x, y}, x) =

y, then by Axiom 4 (or Axiom 5), c({x, y}, x) = c({x, y}, y) which implies γ(x, y) = 1
and hence y ∈ NK

x ({x, y}). Now suppose the claim is true for all S with |S| = n. Let
S with |S| = n be given. By Axiom 7, there exists T ⊆ S with |T | ≤ K such that
c(T, x) = y. If T ⊂ S, then by induction hypothesis, c(S, x) ∈ NK

x (T ) and by B.1,
c(S, x) ∈ NK

x (S). Suppose T = S so that |S| ≤ K. Since there exists no strict subset T
of S with c(T, x) = y we must have that for all z ∈ S \x, c(S, x) = y 6= c(S \z, x). Pick
z distinct from x and y. By Axiom 6, c(S \x, y) = z and c(S \y, x) = c(S \y, z). Since
c(S \ x, y) = z, by induction hypothesis, z ∈ NK

y (S \ x) and by B.1, z ∈ NK
y (S).

Let t = c(S \ y, x) = c(S \ y, z). By induction hypothesis, t ∈ NK
x (S \ y) and

t ∈ NK
z (S \ y). By B.1, t ∈ NK

x (S) and t ∈ NK
z (S). Since |S| ≤ K, B.2 implies

that NK
x (S) = NK

t (S) = NK
z (S). Furthermore, z ∈ NK

y (S) implies NK
y (S) = NK

z (S).
Therefore, NK

x (S) = NK
y (S) and hence y ∈ NK

x (S).

Claim 3. If y ∈ NK
x (S), then there exists T ⊆ S such that c(T, x) = c(T, y).

Proof. Suppose y ∈ NK
x (S). Then, there exists {x1, . . . , xk} ⊆ S with x1 = x, xk =

y, k ≤ K, and γ(xi, xi+1) = 1 for i < k. By definition, γ(xi, xi+1) if and only if
c({xi, xi+1}, xi) = c({xi, xi+1}, xi+1). Let T = {x1, . . . , xk}. Since c({xi, xi+1}, xi) =
c({xi, xi+1}, xi+1) we have that either c({xi, xi+1}, xi) = xi+1 or c({xi, xi+1}, xi+1) = xi.
Then, since |T | ≤ K, by Axiom 5, we have c(T, x1) = c(T, x2) = · · · = c(T, xn).

Claim 4. c(S, x) = argmax(≻, NK
x (S))

Proof. By Claim 2, c(S, x) ∈ NK
x (S). Pick y ∈ NK

x (S). By Claim 3, there exists
T ⊆ S such that c(T, x) = c(T, y). By definition of P we have that either c(T, x) = y
or c(T, x)Py. Furthermore, since S ⊇ T we have that either c(S, x) = c(T, x) or
c(S, x)Pc(T, x). Since ≻ includes P we have that either c(S, x) = y or c(S, x) ≻ y.

Proof of Theorem 3

We prove the “only if” part.

Let xPy if there exists S ⊇ {x, y} such that C(S) = x

Claim 1. P is acyclic.

Proof. Suppose x1Px2P · · ·PxnPx1. Then, there exists S1, . . . Sn with Si ⊇ {xi, xi+1}
for i < n and Sn ⊇ {x1, xn} such that C(Si) = xi. Consider the set T = S1∪S2∪· · ·∪Sn.
Note that, by Axiom 8, we cannot have xi ∈ C(T ) since xi ∈ Si−1 ⊆ T for i > 1 and
x1 ∈ Sn ⊆ T , but C(Si) = xi. Furthermore, we cannot have y ∈ C(T ) for any
y 6∈ {x1, . . . , xn} since y ∈ Si for some i, but y 6∈ C(Si). Hence we cannot assign any
alternative to C(T ). Therefore, P is acyclic.
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Let ≻ be the transitive completion of P . Define γ as

γ(x, y) = 1 if and only if C({x, y}) is a singleton

and let Nx(S) be given by

Nx(S) = {y ∈ S| ∃{x1, . . . , xk} ⊆ S with x1 = x, xk = y, and γ(xi, xi+1) = 1 for i < k}

Claim 2. Let {x1, . . . , xk} be such that C({xi, xi+1}) is a singleton for i < k. Then,
C({x1, . . . , xk}) is a singleton.

Proof. Suppose C({x1, x2}) and C({x2, x3}) are singletons. Since {x1, x2}∩{x2, x3} 6=
∅, by Axiom 10, C({x1, x2, x3}) is a singleton. Now suppose C({x1, . . . , xj}) and
C({xj , xj+1}) are singletons. Since {x1, . . . , xj} ∩ {xj , xj+1} 6= ∅, C({x1, . . . , xj, xj+1})
is a singleton. Iterating this procedure we get that C({x1, . . . , xk}) is a singleton.

Claim 3. If C(S) = y, then y ∈ Nx(S) for all x ∈ S.

Proof. Notice that the claim is trivial for S = {x, y}. Suppose the claim is true for S
with |S| < n. Let S with |S| = n be given and suppose C(S) = y. By Axiom 11, there
exist non-singleton T1, T2 ⊂ S with T1 ∩ T2 6= ∅ and T1 ∪ T2 = S such that C(T1) = y
and C(T2) = z. Pick t ∈ T1 ∩T2. By induction hypothesis, y ∈ Nt(T1) and z ∈ Nt(T2).
Since T1, T2 ⊂ S by A.1, y, z ∈ Nt(S). Now pick x ∈ S. Either x ∈ T1 or x ∈ T2. If
x ∈ T1, then by induction hypothesis, y ∈ Nx(T1) and by A.1, y ∈ Nx(S). If x ∈ T2,
then by induction hypothesis, z ∈ Nx(T2) and by A.1, z ∈ Nx(S). But then, z ∈ Nt(S)
and z ∈ Nx(S). By A.2, Nx(S) = Nz(S) = Nt(S). Since y ∈ Nt(S) we should have
y ∈ Nx(S).

Claim 4. C(S) = {x ∈ S|x = argmax(≻, Nx(S))}

Proof. Firsty, suppose x ∈ C(S). We show that x = argmax(≻, Nx(S)). Pick z ∈
Nx(S). By definition, there exists {x1, . . . , xk} ⊆ S with x1 = x, xk = z such that
C({xi, xi+1}) is a singleton for i < k. By Claim 2, C({x1, . . . , xk}) is a singleton. Since
x ∈ C(S) and x ∈ {x1, . . . , xk} ⊆ S, by Axiom 8, C({x1, . . . , xk}) = x. Therefore, xPz
and hence x ≻ z.

Now suppose x = argmax(≻, Nx(S)). We show that x ∈ C(S). Suppose x 6∈ C(S).
Then, by Axiom 9, there exists y ∈ C(S) and T ⊆ S containing x such that C(T ) = y.
By definition of P , we have yPx and hence y ≻ x. By Claim 3, y ∈ Nx(T ) and by A.1,
y ∈ Nx(S). This contradicts the fact that x = argmax(≻, Nx(S)).

Proof of Theorem 4

We prove the “only if” part.
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For any x 6= y, define xPy if there exists S ⊇ {x, y} such that p(x, S) = 1, and let
≻ be a transitive completion of P . The following claim shows that P is acyclic, and
hence such ≻ exists.

Claim 1. P is acyclic.

Proof. Suppose x1Px2P · · ·PxnPx1. Then, there exists S1, . . . , Sn with Si ⊇ {xi, xi+!}
for i < n and S1 ⊇ {x1, xn} such that p(xi, Si) = 1. Consider the set T = S1 ∪ S2 ∪
· · · ∪ Sn. Pick an element x ∈ T . Since x ∈ T , we must have that x ∈ Si for some i.
If x 6= xi, then p(x, Si) = 0, and by Axiom 12, p(x, T ) = 0. Suppose x = xi. If i > 1,
then x ∈ Si−1 and p(x, Si−1) = 0. If i = 1, then x ∈ Sn and p(x, Sn) = 0. In either
case, Axiom 12 implies p(x, T ) = 0. We showed that p(x, T ) = 0 for all x ∈ T which is
a contradiction. Hence P has no cycle.

Let γ(x, y) = 1 if p(x, {x, y}) = 1 or 0. Given γ, define Nx(S) as

Nx(S) = {y ∈ S|∃ {x1, x2, . . . , xk} such thatx1 = x, xk = y,

and γ(xi, xi+1) = 1 for i < k}

Given any binary choice set {x, y} with p(x, {x, y}) ∈ (0, 1), let

β(x)

β(y)
=

p(x, {x, y})

p(y, {x, y})

In addition, let

∑

x∈X

β(x) = 1

We need to show that there exists a solution to the system of equations with β(x) >
0 for all x ∈ X .

Claim 2. Suppose p(x, {x, y}), p(x, {x, z}), p(y, {y, z}) ∈ (0, 1). Then x, y, and z are
chosen with positive probability when the choice set is {x, y, z}.

Proof. Suppose not. Without loss of generality let p(x, {x, y, z}) = 0. Then by Axiom
13, either p(y, {x, y, z}) = 1 or p(z, {x, y, z}) = 1. Let p(y, {x, y, z}) = 1. But since
p(x, {x, y}), p(x, {x, z}), and p(y, {y, z}) ∈ (0, 1) this violates Axiom 15.

Claim 3. Suppose p(x, {x, y}), p(x, {x, z}), p(y, {y, z}) ∈ (0, 1). Then

p(y, {y, z})

p(z, {y, z})
=

p(y, {x, y})

p(x, {x, y})

p(x, {x, z})

p(z, {x, z})
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Proof. By Claim 2, x, y, and z are chosen with positive probability when the choice
set is {x, y, z}. Then by Axiom 16,

p(y, {x, y, z})

p(z, {x, y, z})
=

p(y, {y, z})

p(z, {y, z})
,
p(y, {x, y, z})

p(x, {x, y, z})
=

p(y, {x, y})

p(x, {x, y})
,
p(x, {x, y, z})

p(z, {x, y, z})
=

p(x, {x, z})

p(z, {x, z})

Since

p(y, {x, y, z})

p(z, {x, y, z})
=

p(y, {x, y, z})

p(x, {x, y, z})

p(x, {x, y, z})

p(z, {x, y, z})

the previous equalities guarantee that

p(y, {y, z})

p(z, {y, z})
=

p(y, {x, y})

p(x, {x, y})

p(x, {x, z})

p(z, {x, z})

Claim 3 guarantees that some equations in the system of equations will be redun-
dant. In particular, if there are 3 alternatives x, y, and z we will have at most 4
equations to solve for β(x), β(y), and β(z) and one of 4 equations will be implied by
the others. If there are N alternatives we will have at most N relevant equations.

To see the existence of a solution to the system of equations with β(x) > 0 for
all x ∈ X , first let β̃(x) = 0 for all x ∈ X such that there exists no y 6= x with
p(x, {x, y}) ∈ (0, 1). For all the other alternatives let

β̃(x)

β̃(y)
=

p(x, {x, y})

p(y, {x, y})

whenever p(x, {x, y}) ∈ (0, 1). (If there are no such alternatives, then set β(x) = 1/N
for all x ∈ X .) Suppose there are M > 0 such alternatives. Then, using Claim 3,
we will have at most M equations in M unknowns which we can solve for β̃(x) > 0
uniquely. There are N − M alternatives for which we set β̃(x) = 0. Now for all x
with β̃(x) > 0, let β(x) = β̃(x)/(N − M + 1) > 0, and for all x with β̃(x) = 0, let
β(x) = (1 −

∑
β̃(y)>0 β(y))/(N − M) > 0. It is easy to see that β satisfies all the

equations and β(x) > 0 for all x ∈ X .

Claim 4. Suppose p(x, S) = 1. Then, x ∈ Nz(S) for all z ∈ S.

Proof. If S = {x, y}, the claim is trivial. Suppose the claim is true for all S with
|S| < n. Pick S with |S| = n. By Axiom 15, there exist non-singleton T1, T2 ⊂ S
with T1 ∪ T2 = S and T1 ∩ T2 6= ∅ such that p(x, T1) = 1 and p(y, T2) = 1 for some
y ∈ S. By induction x ∈ Nz1(T1) for all z1 ∈ T1 and y ∈ Nz2(T2) for all z2 ∈ T2. Since
T1 ∩ T2 6= ∅ there exists z∗ ∈ T1 ∩T2 such that x ∈ Nz∗(T1) and y ∈ Nz∗(T2). Now pick
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z ∈ S. Either z ∈ T1 or z ∈ T2. If z ∈ T1, then by induction x ∈ Nz(T1) and by A.1,
x ∈ Nz(S). Suppose z ∈ T2. Then, by induction, y ∈ Nz(T2) and by A.1, y ∈ Nz(S).
Since y ∈ Nz∗(S) by A.2, Nz(S) = Ny(S) = Nz∗(S). Therefore, x ∈ Nz(S).

Claim 5. Suppose p(x, S) = 1 for some x ∈ S. Then,

(i) y 6= argmax(≻, Ny(S)) for all y 6= x,

(ii) p(x, S) = β(Nx(S))
β(S)

.

Proof. (i) By Claim 4, x ∈ Ny(S) for all y ∈ S. By definition of P , p(x, S) = 1
implies xPy for all y 6= x. Since ≻ includes P we have x ≻ y for all y 6= x.
Therefore, y 6= argmax(≻, Ny(S)).

(ii) By Claim 4, x ∈ Ny(S) for all y ∈ S. By A.2, y ∈ Nx(S) for all y ∈ S. Therefore,

Nx(S) = S. Hence p(x, S) = 1 = β(Nx(S))
β(S)

.

Claim 5 proves the result for all sets S such that there exists x ∈ S with p(x, S) = 1.
Now we prove the result for all possible S.

Claim 6. Suppose p(x, S) ∈ (0, 1). Then p(x,Nx(S)) = 1.

Proof. Pick y ∈ Nx(S), y 6= x. By definition, there exists {x1, x2, . . . , xk} ⊆ S with
x1 = x, xk = y, and p(xi, {xi, xi+1}) = 0 or 1 for i < k. Consider {x1, x2} and {x2, x3}.
We have that {x1, x2} ∩ {x2, x3} 6= ∅, p(xi, {x1, x2}) = 1, and p(xi′ , {x2, x3}) = 1
for some i ∈ {1, 2} and i′ ∈ {2, 3}. By Axiom 14, either p(xi, {x1, x2, x3}) = 1 or
p(xi′ , {x1, x2, x3}) = 1. Now suppose p(xi, {x1, . . . , xj}) = 1 and p(xi′, {xj , xj+1}) = 1
for some i ∈ {1, . . . , j} and i′ ∈ {j, j+1}. By Axiom 14, either p(xi, {x1, . . . , xj , xj+1}) =
1 or p(xi′ , {x1, . . . , xj , xj+1}) = 1. By induction, we must have that p(xi, {x1, . . . , xk}) =
1 for some i ∈ {1, . . . , k}. Now notice that x ∈ {x1, . . . , xk} ⊆ S and p(x, S) > 0. By
Axiom 12, we must have p(x, {x1, . . . , xk}) > 0. Therefore, p(x, {x1, . . . , xk}) = 1.
Since {x1, . . . , xk} ⊆ Nx(S), by Axiom 12, p(y,Nx(S)) = 0. Since the choice of
y ∈ Nx(S) was arbitrary, we must have that p(y,Nx(S)) = 0 for all y ∈ Nx(S),
y 6= x. We conclude that p(x,Nx(S)) = 1.

Claim 7. Suppose p(x, S) > 0 and p(y, S) > 0 for x 6= y. Then, Nx(S) ∩Ny(S) = ∅.

Proof. Suppose z ∈ Nx(S)∩Ny(S). Then by A.2, Nx(S) = Nz(S) = Ny(S). By Claim
6, p(x,Nx(S)) = 1 and p(y,Ny(S)) = 1. Since Nx(S) = Ny(S) and x 6= y we have a
contradiction. Therefore, Nx(S) ∩Ny(S) = ∅.

Claim 8. Let {x1, . . . , xn} ⊆ S be such that p(xi, S) > 0 and
∑

i p(xi, S) = 1. Then,
Nx1

(S) ∪Nx2
(S) ∪ · · · ∪Nxn

(S) = S.
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Proof. It is obvious that Nx1
(S) ∪ Nx2

(S) ∪ · · · ∪ Nxn
(S) ⊆ S. We show that S ⊆

Nx1
(S) ∪ Nx2

(S) ∪ · · · ∪ Nxn
(S). Pick y ∈ S. If y = xi for some i ∈ {1, . . . n}, then

y ∈ Nxi
(S). Suppose y 6∈ {x1, . . . , xn}. By hypothesis, p(y, S) = 0. By Axiom 13,

there exists T ⊆ S containing y such that p(xi, T ) = 1 for some xi ∈ {x1, . . . , xn}. By
Claim 4, xi ∈ Ny(T ) and by A.1, xi ∈ Ny(S). By A.2, y ∈ Nxi

(S).

Claim 9. Suppose p(x, S) > 0 and p(y, S) > 0 for x 6= y. Then, for any z ∈ Ny(S),
we have that p(x,Nx(S) ∪ z) > 0 and p(z,Nx(S) ∪ z) > 0.

Proof. Since Nx(S)∪z ⊆ S by Axiom 12, p(x,Nx(S)∪z) > 0. Suppose p(x,Nx(S)∪z) =
1. Then, by Claim 4, x ∈ Nz(Nx(S) ∪ z) and by A.2, z ∈ Nx(Nx(S) ∪ z). Since
Nx(S) ∪ z ⊆ S, by A.1, z ∈ Nx(S). But then, Nx(S) ∩ Ny(S) 6= ∅. By Claim 7,
this is a contradiction. Therefore, p(x,Nx(S) ∪ z) ∈ (0, 1). Furthermore, by Claim
6, p(x,Nx(S)) = 1 and hence by Axiom 12, p(t, Nx(S) ∪ z) = 0 for all t ∈ Nx(S).
Therefore, p(z,Nx(S) ∪ z) ∈ (0, 1).

Claim 10. Suppose p(x, S) > 0 and p(y, S) > 0 for x 6= y. Then, for any z ∈ Ny(S),

p(x,Nx(S) ∪ z)

p(z,Nx(S) ∪ z)
=

β(Nx(S))

β(z)

Proof. By Claim 6, p(x,Nx(S)) = 1. Pick an element z ∈ Ny(S). By previous claim,
p(x,Nx(S) ∪ z) ∈ (0, 1). By Axiom 17,

p(x,Nx(S) ∪ z)

p(z,Nx(S) ∪ z)
=

∑

t∈Nx(S)

p(t, {z, t})

p(z, {z, t})

Note that we must have p(z, {z, t}) ∈ (0, 1) since otherwise z ∈ Nx(S) which contradicts

Claim 7. By definition, p(t,{z,t})
p(z,{z,t})

= β(t)
β(z)

. Then,

p(x,Nx(S) ∪ z)

p(z,Nx(S) ∪ z)
=

∑

t∈Nx(S)

p(t, {z, t})

p(z, {z, t})
=

∑

t∈Nx(S)

β(t)

β(z)
=

β(Nx(S))

β(z)

Claim 11. Suppose p(x, S) > 0 and p(y, S) > 0 for x 6= y. Then,

p(x,Nx(S) ∪Ny(S))

p(y,Nx(S) ∪Ny(S))
=

β(Nx(S))

β(Ny(S))

Proof. By Claim 6, p(x,Nx(S)) = 1 and p(y,Ny(S)) = 1. By Claim 7, Nx(S)∩Ny(S) =
∅. Furthermore, by Axiom 12, p(x,Nx(S) ∪Ny(S)) > 0 and p(y,Nx(S) ∪Ny(S)) > 0.
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Therefore, by Axiom 17,

p(x,Nx(S) ∪Ny(S))

p(y,Nx(S) ∪Ny(S))
=

∑

t∈Nx(S)

p(t, Ny(S) ∪ t)

p(y,Ny(S) ∪ t)

By Claim 10, for any t ∈ Nx(S),

p(t, Ny(S) ∪ t)

p(y,Ny(S) ∪ t)
=

β(t)

β(Ny(S))

Therefore,

p(x,Nx(S) ∪Ny(S))

p(y,Nx(S) ∪Ny(S))
=

∑

t∈Nx(S)

p(t, Ny(S) ∪ t)

p(y,Ny(S) ∪ t)
=

∑

t∈Nx(S)

β(t)

β(Ny(S))
=

β(Nx(S))

β(Ny(S))

Claim 12. Let {x1, . . . , xn} be such that p(xi, S) > 0 for all i and
∑

i p(xi, S) = 1.
Then, for any i, j ∈ {1, . . . , n},

p(xi, S)

p(xj , S)
=

β(Nxi
(S))

β(Nxj
(S))

Proof. By Claim 11,

p(xi, Nxi
(S) ∪Nxj

(S))

p(xj , Nxi
(S) ∪Nxj

(S))
=

β(Nxi
(S))

β(Nxj
(S))

By Claim 6, p(xi, Nxi
(S)) = 1 for all i ∈ {1, . . . , n}. By iteratively applying Axiom 16

and using the fact that Nx1
(S) ∪ · · · ∪Nxn

(S) = S by Claim 8, we get that

p(xi, S)

p(xj , S)
=

β(Nxi
(S))

β(Nxj
(S))

Claim 13. Let {x1, . . . , xn} be such that p(xi, S) > 0 for all i and
∑

i p(xi, S) = 1.

(i) If y 6∈ {x1, . . . , xn}, then y 6= argmax(≻, Ny(S)),

(ii) If y ∈ {x1, . . . , xn}, then y = argmax(≻, Ny(S)) and p(y, S) = β(Ny(S))
β(S)

.

Proof. (i) Suppose y 6∈ {x1, . . . xn}. Then, p(y, S) = 0. By Axiom 13, there exists
T ⊆ S containing y such that p(xi, T ) = 1 for some xi ∈ {x1, . . . , xn}. By Claim
4, xi ∈ Ny(T ) and by A.1 xi ∈ Ny(S). By definition xiPy and hence xi ≻ y.
Therefore, y 6= argmax(≻, Ny(S))).
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(ii) Suppose y = xi for some xi ∈ {x1, . . . , xn}. By Claim 6, p(xi, Nxi
(S)) = 1. By

definition xiPy for all y ∈ Nxi
(S), y 6= x. Hence xi = argmax(≻, Nxi

(S)). Since
p(x1, S) + · · ·+ p(xi, S) + · · ·+ p(xn, S) = 1 we have that

p(x1, S) + · · ·+ p(xi, S) + · · ·+ p(xn, S)

p(xi, S)
=

1

p(xi, S)

By Claim 12, for any xj ∈ {x1, . . . , xn},

p(xi, S)

p(xj , S)
=

β(Nxi
(S))

β(Nxj
(S))

Then,

β(Nx1
(S)) + · · ·+ β(Nxi

(S)) + · · ·+ β(Nxn
(S))

β(Nxi
(S))

=
1

p(xi, S)

By Claim 8, Nx1
(S) ∪ · · · ∪Nxn

(S) ∪ · · · ∪Nxn
(S) = S. Therefore, β(Nx1

(S)) +
· · ·+ β(Nxi

(S)) + · · ·+ β(Nxn
(S)) = β(S), and hence

p(xi, S) =
β(Nxi

(S))

β(S)

This completes the proof.

Proof of Theorem 5

Let x ≻ y if py(x, {x, y}) > 0.

Claim 1. ≻ is complete and transitive

Proof. By Axiom 18, for any x and y, either px(y, {x, y}) > 0 or py(x, {x, y}) > 0.
Therefore, either x ≻ y or y ≻ x.

Suppose x1 ≻ x2 ≻ x3 ≻ x1. Then, px1
(x3, {x1, x3}) > 0, px2

(x1, {x1, x2}) > 0, and
px3

(x2, {x2, x3}) > 0. Alternatively, px1
(x1, {x1, x3}) < 1, px2

(x2, {x1, x2}) < 1, and
px3

(x3, {x2, x3}) < 1. Then by Axiom 18, px1
(x1, {x1, x2, x3}) ≤ px1

(x1, {x1, x3}) < 1,
px2

(x2, {x1, x2, x3}) ≤ px2
(x2, {x1, x2}) < 1, px3

(x3, {x1, x2, x3}) ≤ px3
(x3, {x2, x3}) <

1. But then there is no dominant alternative in {x1, x2, x3}. This contradicts Axiom
19. Since ≻ is complete we have x1 ≻ x3.
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Let γ(x, y) = max{px(y, {x, y}), py(x, {x, y})} and define Ax(D,S) as

Ax(D,S) =
∏

y∈D

γ(x, y)
∏

z∈S\D

(1− γ(x, z))

Claim 2. Suppose z ∈ S \D. Then, Ax(D,S) = Ax(D,S \ z)Ax({x}, {x, z}).

Proof. Using the definition of Ax(D,S) and some algebraic manipulation we get that

Ax(D,S) =
∏

y∈D

γ(x, y)
∏

t∈S\D

(1− γ(x, t))

=
( ∏

y∈D

γ(x, y)
∏

t∈S\(D∪{z})

(1− γ(x, t))
)
(1− γ(x, z))

=Ax(D,S \ z)Ax({x}, {x, z})

Claim 3. px(y, S) =
∑

y is ≻−best in D

Ax(D,S)

Proof. Suppose S = {x, y}. Firstly, if x ≻ y, then by definition, px(y, {x, y}) = 0 or
px(x, {x, y}) = 1. Hence px(x, {x, y}) = Ax({x}, {x, y}) +Ax({x, y}, {x, y}). Suppose
y ≻ x. Then, by definition, py(x, {x, y}) = 0 and hence Ax({x, y}, {x, y}) = γ(x, y) =
px(y, {x, y}).

Now suppose the claim is true for all S with |S| < n. Pick S with |S| = n. Let
z = argmax(≻, S). Then, we must have pz(t, S) = 0 for all t ∈ S \ z. Otherwise we
would have t ≻ z. Hence pz(z, S) = 1 or z is a dominant alternative in S. By Axiom 20,
px(y, S) = px(y, S\z)px(x, {x, z}). Since z ≻ x by induction hypothesis, px(x, {x, z}) =
Ax(x, {x, z}). Furthermore, since |S\z| < n, px(y, S\z) =

∑
y is ≻−best in D Ax(D,S\z).

Therefore,

px(y, S) =px(y, S \ z)px(x, {x, z})

=
∑

y is ≻−best in D

Ax(D,S \ z)Ax(x, {x, z})

=
∑

z 6∈D
y is ≻−best in D

Ax(D,S) By Claim 2

=
∑

y is ≻−best in D

Ax(D,S) Since z ≻ y

We proved the claim for all y ∈ S \ z. Since z = 1 −
∑

y∈S\z px(y, S), the claim is
also satisfied for z.
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